Atrial natriuretic peptide (ANP) and brain (B-type) natriuretic peptide (BNP) are circulating hormones of cardiac origin that play an important role in the regulation of intravascular blood volume and vascular tone. The plasma concentrations of ANP and BNP are elevated in heart failure, and they are considered to compensate for heart failure because of their diuretic, natriuretic, and vasodilating actions and inhibitory effects on renin and aldosterone secretion. Evidence is also accumulating from recent work that ANP and BNP exert their cardioprotective functions not only as circulating hormones but also as local autocrine and/or paracrine factors. In studies using cultured neonatal myocytes and fibroblasts, exogenous administration of both ANP and ANP antagonists demonstrated that ANP has antihypertrophic and antifibrotic functions. Corroborating these in vitro results, mice lacking natriuretic receptor-A (NPR-A), the receptor for ANP and BNP, develop cardiac hypertrophy and fibrosis independent of their blood pressure. Recent studies also suggest that the intracardiac natriuretic peptides/cGMP system plays a counter-regulatory role against the intracardiac renin-angiotensin-aldosterone system and TGF-beta mediated pathway. In a clinical setting, human recombinant ANP and BNP may be used for a therapy of heart failure; however, further evaluation is required in the future.
Aims/hypothesis: Hyperlipidaemia often occurs in patients with type 2 diabetes mellitus. Though HMGCoA reductase inhibitors (statins) are widely used for controlling hypercholesterolemia, atorvastatin has also been reported to have an adverse effect on glucose metabolism. Based on these findings, the aim of this study was to investigate the effects of statins on adipocytes, which play pivotal roles in glucose metabolism. Methods: In 3T3-L1 cells, effects of statins on adipocyte maturation were determined morphologically. Protein and mRNA levels of SLC2A4 and adipocyte marker proteins were determined by immunoblotting and RT-PCR, respectively. Type 2 diabetic NSY mice were treated with atorvastatin for 15 weeks, followed by glucose and insulin tolerance tests and examination of SLC2A4 expression in white adipose tissue (WAT). Seventy-eight Japanese subjects with type 2 diabetes and hypercholesterolaemia were treated with atorvastatin (10 mg/day), and its effects on lipid and glycaemic profiles were measured 12 weeks after treatment initiation.Results: Treatment with atorvastatin inhibited adipocyte maturation, SLC2A4 and C/EBPα expressions and insulin action in 3T3-L1 cells.Atorvastatin also attenuated SLC2A4 and C/EBPα expressions in differentiated 3T3-L1 adipocytes. These effects were reversed by L-mevalonate or geranylgeranyl pyrophosphate. In NSY mice, atorvastatin accelerated glucose intolerance as a result of insulin resistance and decreased SLC2A4 expression in WAT. In addition to improving hyperlipidaemia, atorvastatin treatment significantly increased HbA 1c but not fasting glucose levels in diabetic patients, and this effect was greater in the nonobese subgroup. Conclusions/interpretation: These results demonstrate that atorvastatin attenuates adipocyte maturation and SLC2A4 expression by inhibiting isoprenoid biosynthesis, and impairs glucose tolerance. These actions of atorvastatin could potentially affect the control of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.