cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre-and peri-implantation embryos, embryonic day (E) 12.5 female gonad͞mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.
The rat small eye strain (rSey) lacks eyes and nose in the homozygote, and is similar to the mouse Sey strain with mutations in the Pax-6 gene. We isolated Pax-6 cDNA clones from an rSey homozygote library, and found an internal deletion of about 600 basepairs in the serine/threonine-rich domain. At the genomic level, a single base (G) insertion in an exon generates an abnormal 5' donor splice site, thereby producing the truncated mRNA. Anterior midbrain crest cells in the homozygous rSey embryos reached the eye rudiments but did not migrate any further to the nasal rudiments, suggesting that the Pax-6 gene is involved in conducting migration of neural crest cells from the anterior midbrain.
Background: The discovery and development of novel biomarkers that could facilitate early diagnosis and thus prevent the progression of atherosclerosis-related diabetes mellitus (DM), cerebral infarction (CI), and cardiovascular disease (CVD) has garnered much research interest. Notably, recent reports have described a number of highly sensitive antibody markers. In this study, we aimed to identify additional antibody markers that would facilitate screening.
Methods:The amplified luminescent proximity homogeneous assay (AlphaLISA) method, which incorporates glutathione-or streptavidin-donor beads and anti-human-IgG-acceptor beads, was used to evaluate serum antibody levels in serum samples. The protein array method was used for the initial screening, and peptide arrays were used to identify epitope sites.
Results:The protein array identified SH3 domain-binding protein 5 (SH3BP5) as a target antigen of serum IgG antibodies in the sera of patients with atherosclerosis. We prepared recombinant glutathione S-transferase (GST)-fused SH3BP5 protein. Peptide arrays revealed that the epitope site recognized by serum antibodies is located within amino acids 161-174 of SH3BP5. AlphaLISA revealed significantly higher serum antibody levels against both the SH3BP5 protein and peptide in patients with DM, acute-phase CI, transient ischemic attack, CVD or chronic kidney disease (CKD), than in healthy donors. Furthermore, areas under the receiver operating characteristic curves of these antibodies were higher in patients with CKD and DM than in other patients. Spearman correlation analysis revealed associations between the serum antibody levels against SH3BP5 peptide and artery stenosis, hypertension, and smoking.
Conclusions:The serum anti-SH3BP5 antibody marker appears to be useful for estimating the progress of atherosclerosis and may discriminate atherosclerosis associated with hypertension and/or habitual smoking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.