Sey/Sey progenitors produce neuroblasts capable of migrating into the OB but fail to generate dopaminergic periglomerular and superficial granule cells. Interestingly, superficial granule neurons also express mRNA for tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Our data show that SVZ neuroblasts are heterogeneous and that Pax6 is required in a cell-autonomous manner for the production of cells in the dopaminergic lineage.
Pax6 is a highly conserved transcription factor among vertebrates and is important in various developmental processes in the central nervous system (CNS), including patterning of the neural tube, migration of neurons, and formation of neural circuits. In this review, we focus on the role of Pax6 in embryonic and postnatal neurogenesis, namely, production of new neurons from neural stem/progenitor cells, because Pax6 is intensely expressed in these cells from the initial stage of CNS development and in neurogenic niches (the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricle) throughout life. Pax6 is a multifunctional player regulating proliferation and differentiation through the control of expression of different downstream molecules in a highly context-dependent manner.
Arodent cardiac side population cell fraction formed clonal spheroids in serum-free medium, which expressed nestin, Musashi-1, and multi-drug resistance transporter gene 1, markers of undifferentiated neural precursor cells. These markers were lost following differentiation, and were replaced by the expression of neuron-, glial-, smooth muscle cell–, or cardiomyocyte-specific proteins. Cardiosphere-derived cells transplanted into chick embryos migrated to the truncus arteriosus and cardiac outflow tract and contributed to dorsal root ganglia, spinal nerves, and aortic smooth muscle cells. Lineage studies using double transgenic mice encoding protein 0–Cre/Floxed-EGFP revealed undifferentiated and differentiated neural crest-derived cells in the fetal myocardium. Undifferentiated cells expressed GATA-binding protein 4 and nestin, but not actinin, whereas the differentiated cells were identified as cardiomyocytes. These results suggest that cardiac neural crest-derived cells migrate into the heart, remain there as dormant multipotent stem cells—and under the right conditions—differentiate into cardiomyocytes and typical neural crest-derived cells, including neurons, glia, and smooth muscle.
The Great East Japan Earthquake (GEJE) and resulting tsunami of March 11, 2011 gave rise to devastating damage on the Pacific coast of the Tohoku region. The Tohoku Medical Megabank Project (TMM), which is being conducted by Tohoku University Tohoku Medical Megabank Organization (ToMMo) and Iwate Medical University Iwate Tohoku Medical Megabank Organization (IMM), has been launched to realize creative reconstruction and to solve medical problems in the aftermath of this disaster. We started two prospective cohort studies in Miyagi and Iwate Prefectures: a population-based adult cohort study, the TMM Community-Based Cohort Study (TMM CommCohort Study), which will recruit 80 000 participants, and a birth and three-generation cohort study, the TMM Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study), which will recruit 70 000 participants, including fetuses and their parents, siblings, grandparents, and extended family members. The TMM CommCohort Study will recruit participants from 2013 to 2016 and follow them for at least 5 years. The TMM BirThree Cohort Study will recruit participants from 2013 to 2017 and follow them for at least 4 years. For children, the ToMMo Child Health Study, which adopted a cross-sectional design, was also started in November 2012 in Miyagi Prefecture. An integrated biobank will be constructed based on the two prospective cohort studies, and ToMMo and IMM will investigate the chronic medical impacts of the GEJE. The integrated biobank of TMM consists of health and clinical information, biospecimens, and genome and omics data. The biobank aims to establish a firm basis for personalized healthcare and medicine, mainly for diseases aggravated by the GEJE in the two prefectures. Biospecimens and related information in the biobank will be distributed to the research community. TMM itself will also undertake genomic and omics research. The aims of the genomic studies are: 1) to construct an integrated biobank; 2) to return genomic research results to the participants of the cohort studies, which will lead to the implementation of personalized healthcare and medicine in the affected areas in the near future; and 3) to contribute the development of personalized healthcare and medicine worldwide. Through the activities of TMM, we will clarify how to approach prolonged healthcare problems in areas damaged by large-scale disasters and how useful genomic information is for disease prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.