Indoleamine 2,3-dioxygenase, the l-tryptophan–degrading enzyme, plays a key role in the powerful immunomodulatory effects on several different types of cells. Because modulation of IDO activities after viral infection may have great impact on disease progression, we investigated the role of IDO following infection with LP-BM5 murine leukemia virus. We found suppressed BM5 provirus copies and increased type I IFNs in the spleen from IDO knockout (IDO−/−) and 1-methyl-d-l-tryptophan–treated mice compared with those from wild-type (WT) mice. Additionally, the number of plasmacytoid dendritic cells in IDO−/− mice was higher in the former than in the WT mice. In addition, neutralization of type I IFNs in IDO−/− mice resulted in an increase in LP-BM5 viral replication. Moreover, the survival rate of IDO−/− mice or 1-methyl-d-l-tryptophan–treated mice infected with LP-BM5 alone or with both Toxoplasma gondii and LP-BM5 was clearly greater than the survival rate of WT mice. To our knowledge, the present study is the first report to observe suppressed virus replication with upregulated type I IFN in IDO−/− mice, suggesting that modulation of the IDO pathway may be an effective strategy for treatment of virus infection.
Nonalcoholic fatty liver disease is one of the most common liver diseases. l-Tryptophan and its metabolite serotonin are involved in hepatic lipid metabolism and inflammation. However, it is unclear whether l-tryptophan promotes hepatic steatosis. To explore this issue, we examined the role of l-tryptophan in mouse hepatic steatosis by using a high fat and high fructose diet (HFHFD) model. l-Tryptophan treatment in combination with an HFHFD exacerbated hepatic steatosis, expression of HNE-modified proteins, hydroxyproline content, and serum alanine aminotransaminase levels, whereas l-tryptophan alone did not result in these effects. We also found that l-tryptophan treatment increases serum serotonin levels. The introduction of adenoviral aromatic amino acid decarboxylase, which stimulates the serotonin synthesis from l-tryptophan, aggravated hepatic steatosis induced by the HFHFD. The fatty acid-induced accumulation of lipid was further increased by serotonin treatment in cultured hepatocytes. These results suggest that l-tryptophan increases the sensitivity to hepatic steatosis through serotonin production. Furthermore, l-tryptophan treatment, adenoviral AADC introduction, and serotonin treatment induced phosphorylation of the mammalian target of rapamycin (mTOR), and a potent mTOR inhibitor rapamycin attenuated hepatocyte lipid accumulation induced by fatty acid with serotonin. These results suggest the importance of mTOR activation for the exacerbation of hepatic steatosis. In conclusion, l-tryptophan exacerbates hepatic steatosis induced by HFHFD through serotonin-mediated activation of mTOR.
IDO converts tryptophan to l-kynurenine, and it is noted as a relevant molecule in promoting tolerance and suppressing adaptive immunity. In this study, we examined the effect of IDO in α-galactosylceramide (α-GalCer)–induced hepatitis. The increase in IDO expression in the liver of wild-type (WT) mice administered α-GalCer was confirmed by real-time PCR, Western blotting, and IDO immunohistochemical analysis. The serum alanine aminotransferase levels in IDO-knockout (KO) mice after α-GalCer injection significantly increased compared with those in WT mice. 1-Methyl-d-tryptophan also exacerbated liver injury in this murine hepatitis model. In α-GalCer–induced hepatitis models, TNF-α is critical in the development of liver injury. The mRNA expression and protein level of TNF-α in the liver from IDO-KO mice were more enhanced compared with those in WT mice. The phenotypes of intrahepatic lymphocytes from WT mice and IDO-KO mice treated with α-GalCer were analyzed by flow cytometry, and the numbers of CD49b+ and CD11b+ cells were found to have increased in IDO-KO mice. Moreover, as a result of the increase in the number of NK cells and macrophages in the liver of IDO-KO mice injected with α-GalCer, TNF-α secretion in these mice was greater than that in WT mice. Deficiency of IDO exacerbated liver injury in α-GalCer–induced hepatitis. IDO induced by proinflammatory cytokines may decrease the number of TNF-α–producing immune cells in the liver. Thus, IDO may suppress overactive immune response in the α-GalCer–induced hepatitis model.
Hepatic immune regulation is associated with the progression from simple steatosis to non-alcoholic steatohepatitis, a severe condition of inflamed fatty liver. Indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme that mediates the catabolism of L-tryptophan to L-kynurenine, plays an important role in hepatic immune regulation. In the present study, we examined the effects of IDO gene silencing on high-fat diet (HFD)-induced liver inflammation and fibrosis in mice. After being fed a HFD for 26 weeks, the IDO-knockout (KO) mice showed a marked infiltration of inflammatory cells, especially macrophages and T lymphocytes, in the liver. The expression levels of F4/80, IFNγ, IL-1β, and IL-6 mRNA in the liver and the expression levels of F4/80 and TNF-α mRNA in the white adipose tissue were significantly increased in IDO-KO mice, although hepatic steatosis, the accumulation of intrahepatic triglycerides, and the amount of oxidative stress were lower than those in IDO-wild-type mice. IDO-KO mice also developed marked pericellular fibrosis in the liver, accumulated hepatic hydroxyproline, and exhibited increased expression levels of hepatic TGF-β1 mRNA. These findings suggest that IDO-KO renders the mice more susceptible to HFD-induced hepatic inflammation and fibrosis. Therefore, IDO may have a protective effect against hepatic fibrosis, at least in this HFD-induced liver injury model.
IDO, an enzyme that degrades the essential amino acid l-tryptophan to N-formylkynurenine, is known to exert immunomodulatory effects in a number of diseases and disorders. IDO expression is increased in tumors, where it is thought to be involved in tumor evasion by suppressing the immune response. A competitive inhibitor of IDO is currently being tested in clinical trials for relapsed or refractory solid tumors; however, there remains a concern that attenuation of the immunosuppressive function of IDO might exacerbate inflammatory responses. In this study, we investigated the role of IDO in 2,4,6-trinitrobenzene sulfate (TNBS)–induced colitis in mice by gene deletion and pharmacological inhibition. TNBS treatment induced significantly more severe colitis in Ido1 gene–deficient (Ido1−/−) mice than in Ido1 wild-type (Ido1+/+) mice, indicating a role for IDO1 in suppression of acute colitis. Consistent with this, the expression of Ido1 was increased in the colonic interstitial tissues of TNBS-treated Ido1+/+ mice. Furthermore, transplantation of Ido1+/+ bone marrow cells into Ido1−/− mice reduced the pathological damage associated with colitis, altered the expression of cytokines, including IFN-γ, TNF-α, and IL-10, and increased the number of CD4+ Foxp3+ regulatory T cells in the colon. Pharmacological inhibition of IDO enzymatic activity by oral administration of 1-methyltryptophan (1-methyl-l-tryptophan or 1-methyl-d-tryptophan) significantly increased the severity of TNBS-induced colitis in mice, demonstrating that both stereoisomers can promote colitis. Collectively, our data indicate that IDO1 plays an important immunoregulatory role in the colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.