Defining cellular and molecular identities within the kidney is necessary to understand its organization and function in health and disease. Here we demonstrate a reproducible method with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that we use to resolve thirty distinct cell populations in human adult kidney. We define molecular transition states along more than ten nephron segments spanning two major kidney regions. We further delineate cell type-specific expression of genes associated with chronic kidney disease, diabetes and hypertension, providing insight into possible targeted therapies. This includes expression of a hypertension-associated mechano-sensory ion channel in mesangial cells, and identification of proximal tubule cell populations defined by pathogenic expression signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes a tool for the generation of healthy and diseased molecular atlases applicable to clinical samples.
GDNF signaling through the Ret receptor tyrosine kinase is critical for ureteric bud branching morphogenesis during kidney development, yet few of the downstream genes are currently known. We find that the ETS transcription factors Etv4 and Etv5 are positively regulated by Ret signaling in the ureteric bud tips. Etv4−/−, Etv5+/− mice display either renal agenesis or severe hypodysplasia, while kidney development fails completely in double homozygotes. We identify several genes whose expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met, Mmp14. Thus, Etv4 and Etv5 are key components of a gene network downstream of Ret that promotes and controls renal branching morphogenesis.
Extracellular nucleotides, including ATP, have been demonstrated to transmit important physiological signals in the brain through either G-protein-coupled P2Y receptors or P2X receptors, which are ligand-gated ion channels. In this study, we performed a detailed analysis of the expression of the Gi/o-coupled receptor P2Y12 in the brain. Northern blot analysis demonstrated that P2Y12 is expressed predominantly in the brain, and to a lesser extent in the spleen. The cellular localization of P2Y12 was investigated by in situ hybridization, and P2Y12 mRNA was detected in small cells distributed throughout the brain, including the hippocampus. Expression of P2Y12 was also observed in naive and axotomized facial nuclei, and the number of P2Y12-expressing cells increased following facial nerve axotomy. Selective expression of P2Y12 mRNA in microglia was confirmed by double-label in situ hybridization and immunohistochemistry with antibodies against NeuN and Iba1 as an immunohistochemical marker for neurons and microglia, respectively. Hardly any P2Y12 mRNA was detected in macrophages obtained from the spleen and abdominal cavity, which share many surface molecules with microglia.
SUMMARYMutations in the receptor tyrosine kinase RET are associated with congenital anomalies of kidneys or urinary tract (CAKUT). RET tyrosine Y1015 is the docking site for PLC, a major regulator of RET signaling. Abrogating signaling via Y1015 causes CAKUT that are markedly different than renal agenesis in Ret-null or RetY1062F mutant mice. We performed analysis of Y1015F mutant upper and lower urinary tracts in mice to delineate its molecular and developmental roles during early urinary tract formation. We found that the degeneration of the common nephric ducts (CND), the caudal-most Wolffian duct (WD) segment, depends on Y1015 signals. The CNDs in Y1015F mutants persist owing to increased proliferation and reduced apoptosis, and showed abundance of phospho-ERK-positive cells. In the upper urinary tract, the Y1015 signals are required for proper patterning of the mesonephros and metanephros. Timely regression of mesonephric mesenchyme and proper demarcation of mesonephric and metanephric mesenchyme from the WD depends on RetY1015 signaling. We show that the mechanism of de novo ectopic budding is via increased ERK activity due to abnormal mesenchymal GDNF expression. Although reduction in GDNF dosage improved CAKUT it did not affect delayed mesenchyme regression. Experiments using whole-mount immunofluorescence confocal microscopy and explants cultures of early embryos with ERK-specific inhibitors suggest an imbalance between increased proliferation, decreased apoptosis and increased ERK activity as a mechanism for WD defects in RetY1015F mice. Our work demonstrates novel inhibitory roles of RetY1015 and provides a possible mechanistic explanation for some of the confounding broad range phenotypes in individuals with CAKUT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.