With the increased scientific interest in green technologies, many researches have been focused on the production of polymeric composites containing naturally occurring reinforcing particles. Apart from increasing mechanical properties, these additions can have a wide range of interesting effects, such as increasing the resistance to bacterial and fungal colonization. In this work, different amounts of two different natural products, namely neem and turmeric, were added to polyethylene to act as a natural antibacterial and antifungal product for food packaging applications. Microscopic and spectroscopic characterization showed that fractions of up to 5% of these products could be dispersed into low-molecular weight polyethylene, while higher amounts could not be properly dispersed and resulted in an inhomogeneous, fragile composite. In vitro testing conducted with Escherichia coli, Staphylococcus aureus, and Candida albicans showed a reduced proliferation of pathogens when compared to the polyethylene references. In particular, turmeric resulted in being more effective against E. coli when compared to neem, while they had similar performances against S. aureus. Against C. albicans, only neem was able to show a good antifungal behavior, at high concentrations. Tensile testing showed that the addition of reinforcing particles reduced the mechanical properties of polyethylene, and in the case of turmeric, it was further reduced by UV irradiation.
With the increased scientific interest in green technologies, many researches have been focused on the production of polymeric composites containing naturally occurring reinforcing particles. Apart from increasing mechanical properties, these additions can have a wide range of interesting effects, such as increasing the resistance to bacterial and fungal colonization. In this work, different amounts of two different natural products, namely neem and turmeric, have been added to polyethylene to act as a natural antibacterial and antifungal product for food packaging applications. Microscopic and spectroscopic characterization showed that fractions up to 5% of these products can be dispersed into low-molecular weight polyethylene, while higher amounts could not be properly dispersed and resulted in an inhomogeneous, fragile composite. In vitro testing conducted with Escherichia coli, Staphylococcus aureus and Candida albicans showed a reduced proliferation of pathogens when compared to the polyethylene references. In particular, turmeric, resulted to be more effective against E. coli when compared to neem, while they had similar performances against S. aureus. Against C. albicans, only neem was able to show a good antifungal behavior, at high concentrations. Tensile testing showed that the addition of reinforcing particles reduces the mechanical properties of polyethylene, and, in the case of turmeric, it is further reduced by UV irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.