WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Co‐administration of proton pump inhibitors (PPIs) increases plasma methotrexate (MTX) concentration in cancer patients receiving high‐dose MTX (HDMTX) therapy. • There is controversy as to whether or not co‐administration of PPIs affects plasma MTX elimination in HDMTX therapy. • Inhibitory activity of PPIs on breast cancer resistance protein (BCRP) is a possible mechanism for the drug interaction between MTX and PPIs. WHAT THIS STUDY ADDS • Co‐administration of a PPI (omeprazole, lansoprazole, or rabeprazole) was more frequently observed in the delayed MTX elimination group than in the normal MTX elimination group. • Multiple logistic regression analysis with adjustment for significant covariates revealed that PPI co‐administration was a significant risk factor for delayed plasma MTX elimination. • The half‐maximal inhibitory concentration of each PPI in inhibiting BCRP function was much higher than the therapeutic unbound concentration in the plasma. AIM To assess whether or not co‐administration of proton pump inhibitors (PPIs) is a risk factor for delayed elimination of plasma methotrexate (MTX) in high‐dose MTX (HDMTX) therapy for malignant diseases. METHODS To assess the effects of PPI co‐administration on elimination of plasma MTX, we examined plasma MTX concentration data on 171 cycles of HDMTX therapy performed in 74 patients. We performed multiple logistic regression analysis to evaluate PPI co‐administration as a risk factor. Inhibitory potencies of omeprazole, lansoprazole, rabeprazole and pantoprazole on MTX transport via breast cancer resistance protein (BCRP, ABCG2) were also investigated in an in vitro study using membrane vesicles expressing human BCRP. RESULTS We identified co‐administration of PPIs as a risk factor for delayed elimination (odds ratio 2.65, 95% confidence interval 1.03, 6.82) as well as renal and liver dysfunction. All four PPIs inhibited BCRP‐mediated transport of MTX, with half‐maximal inhibitory concentrations of 5.5–17.6 µM – considerably higher than the unbound plasma concentrations of the PPIs. CONCLUSIONS Our results support previous findings suggesting that PPI co‐administration is associated with delayed elimination of plasma MTX in patients with HDMTX therapy. This drug interaction, however, cannot be explained solely by the inhibitory effects of PPIs on BCRP‐mediated MTX transport.
The inhibition of intestinal breast cancer resistance protein (BCRP), which restricts the absorption of xenobiotics, may increase the systemic availability of its substrates. The aim of this study was to evaluate the inhibitory effects of herbal extracts and their constituents on BCRP-mediated transport. The inhibitory effects of 9 herbal extracts and 23 isoflavonoids, including soybean-derived isoflavones, on BCRP-mediated methotrexate (MTX) transport were evaluated using BCRP-expressing membrane vesicles. The structure-inhibitory potency relationship was investigated by multiple factor analysis. Extracts of soybean, Gymnema sylvestre, black cohosh and passion flower and rutin strongly inhibited BCRP-mediated transport of MTX at 1 mg/ml, while inhibition by chlorella, milk thistle and Siberian ginseng extracts was weak. Among the 23 isoflavonoids examined, all of which inhibited BCRP-mediated transport, coumestrol showed the most potent inhibition (IC(50)=63 nM). The inhibitory potencies of 6 isoflavonoid glucosides were 10- to 100-fold lower than those of the corresponding aglycones. The addition of a 5-hydroxyl or 6-methoxyl moiety tended to potentiate the inhibition. The inhibitory potency of daidzein was decreased 100-fold by 7-glucuronidation, but was virtually unaffected by 4'-sulfation. Thus, some herbal and dietary supplements and isoflavonoids may increase the systemic availability of BCRP substrates when concomitantly given orally.
Background Appropriate distribution of health care resources is required to adjust regional disparities in the quality of health care. Besides, the number of community pharmacists in Japan has increased recently, but the impact of this increase on the distribution of community pharmacists is unknown. Thus, we aimed at investigating the effect of the increase in the number of community pharmacists on the distribution per population and per area of inhabitable land. Methods Data from 2008 to 2018 were used. Equity among municipalities in the number of community pharmacists per population and per area of inhabitable land was assessed using the Gini coefficient. A mosaic plot was used to demonstrate the relationship between the population density and increase in the number of community pharmacists per municipality. Results The number of community pharmacists increased by approximately 1.3-fold from 2008 to 2018 in Japan. The Gini coefficient per population decreased gradually, whereas that per area increased slightly, with no change in distribution per area of inhabitable land. The number of community pharmacists per population increased regardless of the population density, but this increase per area was smaller for lower population density groups and larger for higher population density groups. Conclusion The increase in the number of community pharmacists has improved the distribution of community pharmacists per population, but not that per area of inhabitable land. The maldistribution of community pharmacists per area implies an imbalance in the distance between pharmacies and residents. Thus, there is need for measures to improve the distribution of community pharmacists.
Cholestasis is defined as a reduction of bile secretion caused by a dysfunction of bile formation. Insufficient bile secretion into the intestine undermines the formation of micelles, which may result in the reduced absorption of lipids and fat-soluble vitamins. Here, we investigated the retinol homeostasis and the alterations of retinol metabolism-related genes, including β-carotene 15,15′ monooxygenase (BCMO), lecithin:retinol acyltransferase (LRAT), aldehyde dehydrogenase (ALDH), cytochrome P450 26A1 (CYP26A1), and retinoic acid receptors (RAR) β, in a α-naphthyl isothiocyanate (ANIT)-induced cholestasis rat model. Moreover, we examined the expression of the farnesoid X receptor (FXR) target genes. Our results showed that plasma retinol levels were decreased in ANIT rats compared to control rats. On the contrary, hepatic retinol levels were not different between the two groups. The expression of FXR target genes in the liver and intestine of cholestasis model rats was repressed. The BCMO expression was decreased in the liver and increased in the intestine of ANIT rats compared to control rats. Finally, the hepatic expression of LRAT, RARβ, and ALDH1A1 in cholestatic rats was decreased compared to the control rats, while the CYP26A1 expression of the liver was not altered. The increased expression of intestinal BCMO in cholestasis model rats might compensate for decreased circulatory retinol levels. The BCMO expression might be regulated in a tissue-specific manner to maintain the homeostasis of retinol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.