We propose a method for coronary arterial dynamics computation with medical-image-based time-dependent anatomical models. The objective is to improve the computational analysis of coronary arteries for better understanding of the links between the atherosclerosis development and mechanical stimuli such as endothelial wall shear stress and structural stress in the arterial wall. The method has two components. The first one is element-based zero-stress (ZS) state estimation, which is an alternative to prestress calculation. The second one is a "mixed ZS state" approach, where the ZS states for different elements in the structural mechanics mesh are estimated with reference configurations based on medical images coming from different instants within the cardiac cycle. We demonstrate the robustness of the method in a patient-specific coronary arterial dynamics computation where the motion of a thin strip along the arterial surface and two cut surfaces at the arterial ends is specified to match the motion extracted from the medical images.
Backward wave oscillators (BWOs) have been studied as a candidate high-power microwave source. To increase the operation frequency, an oversized slow-wave structure (SWS) is used. The operation at reduced voltage is preferable for practical applications. This work is aimed at numerically examining the operation mode of a weakly relativistic oversized BWO. We examine not only the axisymmetric transverse magnetic mode but also the non-axisymmetric hybrid modes of the oversized SWS. Both of them are candidates for the operation modes. These modes are surface waves whose fields are concentrated near the SWS wall. They overlap in frequency and are not separated by stop-bands. For an efficient beam interaction, the injected electron beam needs to be controlled more accurately than in the non-oversized SWS case.
The relative and absolute configurations of an oxygenated bisabolane natural product, isolated from Ligularia lankongensis, were determined by synthesis. All four possible stereoisomers and their tiglate analogues were synthesized from R-(-)-carvone, and their H andC NMR spectra were compared to establish the 6R,8S,10S configuration. The stereoselective synthesis of the natural product was also achieved, featuring Brown allylation, vanadium-catalyzed epoxidation, and the Mitsunobu reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.