Small fatigue crack propagation in bimodal harmonic structured titanium alloy (Ti-6Al-4V) with high strength and ductility was examined under four-point bending at a stress ratio of 0.1 in the ambient laboratory atmosphere. The crack profiles were observed using optical microscopy and scanning electron microscopy, and analyzed using an electron backscattered diffraction to examine the mechanism of small fatigue crack propagation. Fatigue crack paths were not influenced by the bimodal harmonic structure, and the crack growth rates, da/dN, in the harmonic structured Ti-6Al-4V were almost the same as those in a material with coarse acicular microstructure for comparable values of stress intensity range, K. In contrast, the harmonic structured Ti-6Al-4V had a higher resistance of fatigue crack initiation due to the grain refinement induced by mechanical milling, which resulted in an increase of the fatigue life and fatigue limit. Furthermore, the statistical fatigue properties of Ti-6Al-4V alloy were analyzed using the stress dependence of Weibull parameters to quantitatively examine the effects of the bimodal harmonic structure on its fatigue life.
To examine near-threshold fatigue crack propagation in commercially pure (CP) titanium with a bimodal harmonic structure, which is defined as a coarse grained structure surrounded by a network of fine grains, K-decreasing tests were conducted. The crack growth rates for harmonic-structured CP titanium were higher than those for homogeneous material with coarse grains at comparable stress intensity range, while the threshold stress intensity range was lower. This phenomenon was attributed to a reduction in the extent of crack closure and the effective threshold stress intensity range, resulting from the presence of fine grains in the harmonic structure.
ABSTRACT. Titanium alloy (Ti-6Al-4V) having a bimodal "harmonic structure", which consists of coarsegrained structure surrounded by a network structure of fine grains, was fabricated by mechanical milling (MM) and spark plasma sintering (SPS) to achieve high strength and good plasticity. The aim of this study is to investigate the near-threshold fatigue crack propagation in Ti-6Al-4V alloy with harmonic structure. Ti-6Al-4V alloy powders were mechanically milled in a planetary ball mill to create fine grains at powder's surface and the MM-processed powders were consolidated by SPS. K-decreasing fatigue crack propagation tests were conducted using the DC(T) specimen (ASTM standard) with harmonic structure under the stress ratios, R, from 0.1 to 0.8 in ambient laboratory atmosphere. After testing, fracture surfaces were observed using scanning electron microscope (SEM), and crack profiles were analyzed using electron backscatter diffraction (EBSD) to discuss the mechanism of fatigue crack propagation. Threshold stress intensity range, Kth, of the material with harmonic structure decreased with stress ratio, R, whereas the effective stress intensity range, Keff, showed constant value for R lower than 0.5. This result indicates that the influence of the stress ratio, R, on Kth of Ti6Al-4V with harmonic structure can be concluded to be that on crack closure. Compared to the compact prepared from as-received powders with coarse acicular microstructure, K th value of the material with harmonic structure was low. This was because the closure stress intensity, K cl , in the material with harmonic structure was lower than that of the coarse-grained material due to the existence of fine grains. In addition, the effects of the grain size on the fatigue crack propagation behaviors of Ti-6Al-4V alloy were investigated for the bulk homogeneous material. The effects of the stress ratio and the grain size on the fatigue crack propagation of the material with harmonic structure were quantified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.