In this study, knocking over a wide range of engine speeds was visualized using an optically acssessible engine. In addition, knock under a high compression ratio and supercharged, lean combustion was investigated. The results revealed that under high-speed knock, the flame propagation velocity declined when low-temperature oxidation reactions occurred. Subsequently, autoignition began locally and expanded gradually. Eventually, it was observed that a highly brilliant autoignited flame appeared and propagated through the unburned end gas at a high speed of approximately 1700-1800 m/s. This suggests that high-speed knock causes "developing detonation" in which combustion proceeds at a supersonic speed while pressure waves and the reaction front mutually interact. It was also found that strong knock occurred under supercharged, ultra-lean conditions (Compression Ratio: CR=14, Equivalence Ratio: =0.5, Intake Pressure: Pin = 140 kPa). In addition, the application of exhaust gas recirculation markedly reduced strong pressure oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.