We constructed novel artificial riboswitches that function in a eukaryotic translation system (wheat germ extract), by rationally implanting an in vitro-selected aptamer into the intergenic internal ribosome entry site (IRES) of Plautia stali intestine virus. These eukaryotic OFF-riboswitches (OFF-eRSs) ligand-dose-dependently downregulate IRES-mediated translation without hybridization switches, which typical riboswitches utilize for gene regulation. The hybridization-switch-free mechanism not only allows for easy design but also requires less energy for regulation, resulting in a higher switching efficiency than hybridization-switch-based OFF-eRSs provide. In addition, even a small ligand such as theophylline can induce satisfactory repression, in contrast to other types of OFF-eRSs that modulate the 5' cap-dependent canonical translation. Because our proposed hybridization-switch-free OFF-eRSs are based on a versatile IRES that functions well in many types of eukaryotic translation systems, they would be widely usable elements for synthetic gene circuits in both cell-free and cell-based synthetic biology.
A novel anionic heptamethine cyanine (HMC) dye with two trifluoromethyl groups that selectively absorb near-infrared light is synthesized. When contrasted with previously studied anionic HMC dyes with substituents such as methyl, phenyl, and pentafluorophenyl groups, the trifluoromethylated dye displays a red-shifted maximum absorption wavelength (for instance, 948 nm in CH2Cl2) along with enhanced photostability. Furthermore, HMC dyes with broad absorption in the near-infrared region are synthesized by combining a trifluoromethylated anionic HMC dye with a cationic HMC dye as a counterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.