digested by collagenase/trypsin, and the digested cardiac cells were allowed to attach to the plates overnight. The attached cells included macrophages and myofibroblasts (positive for α smooth muscle actin [αSMA]) as well as other cardiac cells (Supplemental Figure 1B). Notably, cardiac myofibroblasts seemed to be more difficult than cardiac macrophages to collect using our isolation method from infarcted hearts because, as revealed by our immunohistochemical analysis, the number of cardiac myofibroblasts was the same as that of cardiac macrophages in the infarcted area (Supplemental Figure 1C). When the overnight-attached cells were cultured in 10% FBS/DMEM for more than 6 days, almost all of the cells on the plates were positive for αSMA and SM22α, 2 myofibroblast marker proteins (18, 19) (>97.9% and >93.8%, respectively) (Supplemental Figure 1, D and E), indicating that the cells were primarily composed of cardiac myofibroblasts. This is probably because only myofibroblasts were able to grow rapidly in the culture medium.Isolated cardiac macrophages and myofibroblasts were allowed to engulf fluorescently labeled apoptotic cells, and we assessed the fluorescence taken up by cardiac macrophages and administration promoted the restoration of cardiac function and morphology after MI, suggesting that MFG-E8 is a new therapeutic target for the treatment of MI.
Synthetic biological circuits are designed to regulate gene expressions to control cell function. To date, these circuits often use DNA-delivery methods, which may lead to random genomic integration. To lower this risk, an all RNA system, in which the circuit and delivery method are constituted of RNA components, is preferred. However, the construction of complexed circuits using RNA-delivered devices in living cells has remained a challenge. Here we show synthetic mRNA-delivered circuits with RNA-binding proteins for logic computation in mammalian cells. We create a set of logic circuits (AND, OR, NAND, NOR, and XOR gates) using microRNA (miRNA)- and protein-responsive mRNAs as decision-making controllers that are used to express transgenes in response to intracellular inputs. Importantly, we demonstrate that an apoptosis-regulatory AND gate that senses two miRNAs can selectively eliminate target cells. Thus, our synthetic RNA circuits with logic operation could provide a powerful tool for future therapeutic applications.
Background-The balance between apoptosis and proliferation of vascular smooth muscle cells (VSMCs) is believed to contribute to the vascular remodeling process. Cyclic AMP response element-binding protein (CREB) is a critical transcription factor for the survival of neuronal cells and T lymphocytes. However, the role of CREB in blood vessels is incompletely characterized. Methods and Results-Nuclear staining with Hoechst 33258 or propidium iodine showed an increase in apoptotic cells with activation of caspase-3 in VSMCs infected with adenovirus expressing the dominant-negative form of CREB (AdCREBM1). Basal expression of Bcl-2 and Bcl-2 promoter activity were decreased by infection with AdCREBM1. Immunohistochemistry revealed that CREB was mainly induced and activated in the neointimal ␣-smooth muscle actin-positive cells of rat carotid artery after balloon injury. Infection with AdCREBM1 suppressed neointimal formation (intima-media ratio) by 33.8% after 14 days of injury, which was accompanied by an increase in apoptosis as indicated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells and a decrease in bromodeoxyuridine incorporation. Conclusions-These results suggest that CRE-dependent gene transcription might play an important role in the survival and proliferation of VSMCs. CREB might be a novel transcription factor mediating the vascular remodeling process and a potential therapeutic target for atherosclerotic disease.
Our data provides a novel insight into an effect of telmisartan: telmisartan inhibits AT1R gene expression through PPARgamma activation. The dual inhibition of angiotensin II function by telmisartan - AT1R blockade and downregulation - would contribute to more complete inhibition of the renin-angiotensin system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.