Relying on a five-bar linkage model of the lower limb/bicycle system, intersegmental forces and moments are computed over a full crank cycle. Experimental data enabling the solution of intersegmental loads consist of measured crank arm and pedal angles together with the driving pedal force components. Intersegmental loads are computed as a function of pedaling rate while holding the average power over a crank cycle constant. Using an algorithm that avoids redundant equations, stresses are computed in 12 lower limb muscles. Stress computations serve to evaluate a muscle stress-based objective function. The pedaling rate that minimizes the objective function is found to be in the range of 95–100 rpm. In solving for optimal pedaling rate, the muscle stresses are examined over a complete crank cycle. This examination provides insight into the functional roles of individual muscles in cycling.
Using a five-bar linkage model of the leg/bicycle system in conjunction with experimental kinematic and pedal force data, the inverse dynamics problem is solved to yield the intersegmental moments. Among the input data that affect the problem solution is the height of the pedal platform. This variable is isolated and its effects on the total joint moments are studied as it assumes values over a ±4-cm range. Platform height variation affects the total joint moment peak values by up to 13%. Relying on a cost function derived from the hip and knee moments, it is found that the platform height that minimizes the cost function is +2 cm. The sensitivity of the cost function to the platform height variable is low; over the variable range the cost function increases 2% above the minimum. These results hold for a pedaling rate of 90 rpm. As pedaling rate is varied above and below 90 rpm, the sensitivity of the cost function increases. The platform heights that minimize the cost function are the lower and upper limits for 60 and 120 rpm, respectively. Thus the platform height variable interacts with pedaling rate, requiring a compromise in platform height adjustment. The compromise height depends on the individual’s preferred pedaling rate range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.