Relying on a five-bar linkage model of the lower limb/bicycle system, intersegmental forces and moments are computed over a full crank cycle. Experimental data enabling the solution of intersegmental loads consist of measured crank arm and pedal angles together with the driving pedal force components. Intersegmental loads are computed as a function of pedaling rate while holding the average power over a crank cycle constant. Using an algorithm that avoids redundant equations, stresses are computed in 12 lower limb muscles. Stress computations serve to evaluate a muscle stress-based objective function. The pedaling rate that minimizes the objective function is found to be in the range of 95–100 rpm. In solving for optimal pedaling rate, the muscle stresses are examined over a complete crank cycle. This examination provides insight into the functional roles of individual muscles in cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.