The inwardly rectifying K(+) channel Kir6.1 forms K(+) channels by coupling with a sulfonylurea receptor in reconstituted systems, but the physiological roles of Kir6.1-containing K(+) channels have not been determined. We report here that mice lacking the gene encoding Kir6.1 (known as Kcnj8) have a high rate of sudden death associated with spontaneous ST elevation followed by atrioventricular block as seen on an electrocardiogram. The K(+) channel opener pinacidil did not induce K(+) currents in vascular smooth-muscle cells of Kir6.1-null mice, and there was no vasodilation response to pinacidil. The administration of methylergometrine, a vasoconstrictive agent, elicited ST elevation followed by cardiac death in Kir6.1-null mice but not in wild-type mice, indicating a phenotype characterized by hypercontractility of coronary arteries and resembling Prinzmetal (or variant) angina in humans. The Kir6.1-containing K(+) channel is critical in the regulation of vascular tonus, especially in the coronary arteries, and its disruption may cause Prinzmetal angina.
Abstract-ATP-sensitive potassium (K ATP ) channels were discovered in ventricular cells, but their roles in the heart remain mysterious. K ATP channels have also been found in numerous other tissues, including vascular smooth muscle. Two pore-forming subunits, Kir6.1 and Kir6.2, contribute to the diversity of K ATP channels. To determine which subunits are operative in the cardiovascular system and their functional roles, we characterized the effects of pharmacological K
We investigated the effects of JTV‐519 (4‐[3‐(4‐benzylpiperidin‐1‐yl)propionyl]‐7‐methoxy‐2,3,4,5‐tetrahydro‐1,4‐benzothiazepine monohydrochloride), a novel cardioprotective drug, on the repolarizing K+ currents in guinea‐pig atrial cells by use of patch‐clamp techniques. We also evaluated the effects of JTV‐519 on experimental atrial fibrillation (AF) in isolated guinea‐pig hearts. In atrial cells stimulated at 0.2 Hz, JTV‐519 in concentrations of 0.3 and 1 μM slightly prolonged the action potential duration (APD). The drug also reversed the action potential shortening induced by the muscarinic agonist carbachol in a concentration‐dependent manner. The muscarinic acetylcholine receptor‐operated K+ current (IK.ACh) was activated by the extracellular application of carbachol (1 μM), adenosine (10 μM) or by the intracellular loading of GTPγS (100 μM). JTV‐519 inhibited the carbachol‐, adenosine‐ and GTPγS‐induced IK.ACh with the IC50 values of 0.12, 2.29 and 2.42 μM, respectively, suggesting that the drug may inhibit IK.ACh mainly by blocking the muscarinic receptors. JTV‐519 (1 μM) inhibited the delayed rectifier K+ current (IK). Electrophysiological analyses indicated that the drug preferentially inhibits IKr (rapidly activating component) but not IKs (slowly activating component). In isolated hearts, perfusion of carbachol (1 μM) shortened monophasic action potential (MAP) and effective refractory period (ERP), and lowered atrial fibrillation threshold (AFT). Addition of JTV‐519 (1 μM) inhibited the induction of AF by prolonging MAP and ERP. We conclude that JTV‐519 can exert antiarrhythmic effects against AF by inhibiting repolarizing K+ currents. The drug may be useful for the treatment of AF in patients with ischaemic heart disease. British Journal of Pharmacology (2000) 131, 1363–1372; doi:10.1038/sj.bjp.0703713
Abstract. After the report of the Cardiac Arrhythmia Suppression Trial, a tabular framework of the Sicilian Gambit has been proposed to display actions of antiarrhythmic drugs on ion channels and receptors and to provide more rational pharmacotherapy of arrhythmias. However, because effects of antiarrhythmic drugs on I f have not been thoroughly examined, we used patch clamp techniques to determine the effects of various antiarrhythmic drugs on the HCN (hyperpolarization-activated cyclic nucleotide-gated) channel currents. HCN4 channels, a dominant isoform of HCN channels in the heart, were expressed in HEK293 cells. Amiodarone and bepridil potently inhibited the HCN4 channel current with IC 50 values of 4.5 and 4.9 μM, respectively, which were close to their therapeutic concentrations. The inhibitory effects of quinidine, disopyramide, cibenzoline, lidocaine, mexiletine, aprindine, propafenone, flecainide, propranolol, and verapamil on the HCN4 channel current were weak in their therapeutic concentrations, with IC 50 values of 78.3, 249, 46.8, 276, 309, 43.7, 14.3, 1700, 50.5, and 44.9 μM, respectively, suggesting that the inhibitory effects on I f would be clinically small. d,l-Sotalol hardly affected the HCN4 channel current. Information about the HCN4-channel effects of many antiarrhythmic drugs may be useful for determining the appropriate drug for treatment of various arrhythmias while minimizing adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.