Hypertension in patients with chronic kidney disease (CKD) strongly associates with cardiovascular events. Among patients with CKD, reducing the accumulation of uremic toxins may protect against the development of hypertension and progression of renal damage, but there are no established therapies to accomplish this. Here, overexpression of human kidney-specific organic anion transporter SLCO4C1 in rat kidney reduced hypertension, cardiomegaly, and inflammation in the setting of renal failure. In addition, SLCO4C1 overexpression decreased plasma levels of the uremic toxins guanidino succinate, asymmetric dimethylarginine, and the newly identified trans-aconitate. We found that xenobiotic responsive element core motifs regulate SLCO4C1 transcription, and various statins, which act as inducers of nuclear aryl hydrocarbon receptors, upregulate SLCO4C1 transcription. Pravastatin, which is cardioprotective, increased the clearance of asymmetric dimethylarginine and trans-aconitate in renal failure. These data suggest that drugs that upregulate SLCO4C1 may have therapeutic potential for patients with CKD.
DUSP6/MKP-3, a specific inhibitor of MAPK1/ERK2, frequently loses its expression in primary pancreatic cancer tissues. This evidence suggests that constitutive activation of MAPK1 synergistically induced by frequent mutation of KRAS2 and the loss of function of DUSP6 plays key roles in pancreatic carcinogenesis and progression. By profiling of gene expressions associated with downregulation of MAPK1 induced by exogenous overexpression of DUSP6 in pancreatic cancer cells, we found that AURKA/STK15, the gene encoding Aurora-A kinase, which plays key roles in cellular mitosis, was among the downregulated genes along with its related genes, which included AURKB, TPX2 and CENPA. An association of expression and promoter activity of AURKA with MAPK activity was verified. Knockdown of ETS2 resulted in a reduction of AURKA expression. These results indicate that AURKA is a direct target of the MAPK pathway and that its overexpression in pancreatic cancer is induced by hyperactivation of the pathway, at least via ETS2.
DMBT1 (deleted in malignant brain tumors) is a candidate tumor suppressor gene that has been mapped to chromosome 10q25.3-q26.1, a region in which frequent loss of heterozygosity (LOH) has been observed in several human tumors. Since DMBT1 is highly expressed in the lung, we analyzed LOH at the DMBT1 locus and expression of this gene in lung cancer. Thirty-five (53%) of 66 primary lung cancers showed LOH, and diminished expression of DMBT1 was observed in 20 (91%) of 22 lung cancer cell lines: three (14%) of them showed loss of expression. We further determined the primary structure of DMBT1 and analyzed genetic alterations in this gene using 23 lung cancer cell lines. Two (9%) of them had homozygous deletion within the gene, and two cell lines had genetic aberrations: one was a rearrangement involving exons 5 and 6, and the other was a missense mutation at codon 52. These results suggest that inactivation of the DMBT1 gene plays an important role in human lung carcinogenesis.
hMSH2 is a homolog of bacterial mutS and yeast Msh2, a member of the group of mismatch repair genes whose products bind to mismatched regions of double-stranded DNA. We analyzed expression of hMSH2 in normal human organs by the polymerase chain reaction coupled with reverse transcription and found two novel types of alternatively spliced mRNAs that were expressed in normal human organs. One lacked exon 13, and the other lacked a portion from the second nucleotide of codon 633 to the second nucleotide of codon 719. In the latter transcript, intro 12 started with TA and ended with TT (TA-TT intron) which did not meet the GT-AG rule. Both types of transcript resulted in frameshifts which generated truncated hMSH2 proteins lacking the main part of the highly conserved region. The biological significance of the alternative splicing remains to be elucidated.
Neuroblastoma (NB) is a well-known malignant disease in infants, but its molecular mechanisms have not yet been fully elucidated. To investigate the genetic contribution of abnormalities on the long arm of chromosome 14 (14q) in NB, we analysed loss of heterozygosity (LOH) in 54 primary NB samples using 12 microsatellite markers on 14q32. Seventeen (31%) of 54 tumours showed LOH at one or more of the markers analysed, and the smallest common region of allelic loss was identified between D14S62 and D14S987. This region was estimated to be 1-cM long from the linkage map. Fluorescence in situ hybridization also confirmed the loss. There was no statistical correlation between LOH and any clinicopathologic features, including age, stage, amplification of MYCN and ploidy. We further constructed a contig spanning the lost region using bacterial artificial chromosome and estimated this region to be approximately 1.1-Mb by pulsed-field gel electrophoresis. Our results will contribute to cloning and characterizing the putative tumour-associated gene(s) in 14q32 in NB. © 2000 Cancer Research Campaign
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.