Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel.
Single-walled carbon nanotubes (SWNTs) have strong potential for molecular electronics, owing to their unique structural and electronic properties. However, various outstanding issues still need to be resolved before SWNT-based devices can be made. In particular, large-scale, air-stable and controlled doping is highly desirable. Here we present a method for integrating organic molecules into SWNTs that promises to push the performance limit of these materials for molecular electronics. Reaction of SWNTs with molecules having large electron affinity and small ionization energy achieved p- and n-type doping, respectively. Optical characterization revealed that charge transfer between SWNTs and molecules starts at certain critical energies. X-ray diffraction experiments revealed that molecules are predominantly encapsulated inside SWNTs, resulting in an improved stability in air. The simplicity of the synthetic process offers a viable route for the large-scale production of SWNTs with controlled doping states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.