Solid-state single spins are promising resources for quantum sensing, quantum-information processing and quantum networks, because they are compatible with scalable quantum-device engineering. However, the extension of their coherence times proves challenging. Although enrichment of the spin-zero
12
C and
28
Si isotopes drastically reduces spin-bath decoherence in diamond and silicon, the solid-state environment provides deleterious interactions between the electron spin and the remaining spins of its surrounding. Here we demonstrate, contrary to widespread belief, that an impurity-doped (phosphorus) n-type single-crystal diamond realises remarkably long spin-coherence times. Single electron spins show the longest inhomogeneous spin-dephasing time (
ms) and Hahn-echo spin-coherence time (
T
2
≈ 2.4 ms) ever observed in room-temperature solid-state systems, leading to the best sensitivities. The extension of coherence times in diamond semiconductor may allow for new applications in quantum technology.
Total photoyield experiments are applied to characterize p-, intrinsic, and n-type diamond with hydrogen-terminated surfaces. On all hydrogen-terminated samples a photoelectron threshold energy of 4.4 eV is detected which is discussed in detail in this letter. We attribute this threshold to the energy gap between the valence-band maximum and the vacuum level, which is 1.1 eV below the conduction-band minimum, and generally referred to as ”negative electron affinity” (NEA). Hydrogen terminated p-type and intrinsic diamond show a rise of secondary photoyield in the excitation regime hν>5.47eV. However, this is not detected on n-type diamond. We ascribe this to the formation of an upward surface band bending in the vicinity of the n-type diamond surface which acts as an energy barrier for electrons.
Nitrogen-vacancy (NV) centers in diamond have attracted significant interest because of their excellent spin and optical characteristics for quantum information and metrology. To take advantage of the characteristics, the precise control of the orientation of the N-V axis in the lattice is essential.Here we show that the orientation of more than 99 % of the NV centers can be aligned along the [111]axis by CVD homoepitaxial growth on (111)-substrates. We also discuss about mechanisms of the alignment. Our result enables a fourfold improvement in magnetic-field sensitivity and opens new avenues to the optimum design of NV center devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.