I n research on 3D image communications and virtual reality, developing techniques for synthesizing arbitrary views has become an important technical issue. Given an object's structural model (such as a polygon or volume model), it's relatively easy to synthesize arbitrary views. Generating a structural model of an object, however, isn't necessarily easy. For this reason, research has been progressing on a technique called image-based modeling and rendering (IBMR) that avoids this problem. To date, researchers have performed studies on various IBMR techniques. (See the "Related Work" sidebar for more specific information.) Our work targets 3D scenes in motion. In this article, we propose a method for view-dependent layered representation of 3D dynamic scenes. Using densely arranged cameras, we've developed a system that can perform processing in real time from image pickup to interactive display, using video sequences instead of static images, at 10 frames per second (frames/sec). In our system, images on layers are view dependent, and we update both the shape and image of each layer in real time. This lets us use the dynamic layers as the coarse structure of the dynamic 3D scenes, which improves the quality of the synthesized images. In this sense, our prototype system may be one of the first full real-time IBMR systems. Our experimental results show that this method is useful for interactive 3D rendering of real scenes.
Integral photography (IP), which is one of the ideal 3-D photographic technologies, can be regarded as a method of capturing and displaying light rays passing through a plane. The NHK Science and Technical Research Laboratories have developed a real-time IP system using an HDTV camera and an optical fiber array. In this paper, the authors propose a method of synthesizing arbitrary views from IP images captured by the HDTV camera. This is a kind of image-based rendering system, founded on the 4-D data space Representation of light rays. Experimental results show the potential to improve the quality of images rendered by computer graphics techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.