Power generation with a supercritical CO2 closed regenerative Brayton cycle has been successfully demonstrated using a bench scale test facility. A set of a centrifugal compressor and a radial inflow turbine of finger top size is driven by a synchronous motor/generator controlled using a high-speed inverter. A 110 W power generating operation is achieved under the operational condition of rotational speed of 1.15kHz, CO2 flow rate of 1.1 kg/s, and respective thermodynamic states (7.5 MPa, 304.6 K) at compressor and (10.6 MPa, 533 K) at turbine inlet. Compressor work reduction owing to real gas effect is experimentally examined. Compressor to turbine work ratio in supercritical liquid like state is measured to be 28% relative to the case of ideal gas. Major loss of power output is identified as rotor windage. It is found the isentropic efficiency depends little on compressibility coefficient. Off design performance of gas turbine working in supercritical state is well predicted by a Meanline program. The CFD analysis on compressor internal flow indicates that the presence of backward flow around the tip region might create a locally depressurized region leading eventually to the onset of flow instability.
Two advanced optical systems and a highly efficient thermal cycle suitable for beam-down power tower with thermal storage are presented. (1) To increase field efficiency, the “cross beam” heliostat array concept is proposed. Using continuum optical model, the characteristics of the cross beam concept and its economy were investigated. (2) To protect the central reflector (CR) against wind force, a “multi-ring CR” concept is proposed. The concentration performance of multi-ring CRs is calculated using the ray-tracing method. It shows no worse results than the case with a single hyperboloid mirror. (3) The potential of a closed gas turbine cycle with supercritical carbon dioxide as a working fluid was investigated. An optimal cycle configuration involves a regenerative cycle with pre-cooling and inter-cooling cycles, in which theoretically achievable cycle thermal efficiency is 47% at the turbine inlet temperature of 800 K and turbine inlet pressure of 20 MPa. Detailed thermal design of a critical component, regenerative heat exchanger (RHX) is carried out using a newly developed printed heat exchanger (PCHE). It proved to be a feasible design.
Development of a closed cycle gas turbine using supercritical carbon dioxide as a working fluid is underway to generate power from industrial waste heat sources of a low or intermediate temperature range. Its demonstration test plan using a reduced scale turbomachine is described herein. Principal specifications include the following: net power output of 10 kWe and recirculation CO2 with flow rate of 1.2 kg/s under given turbine inlet conditions of 550 K and 12 MPa. The optimized ranges of compressor inlet temperatures and pressures are investigated in this study. Given these inlet conditions, primary and auxiliary component development is done. Coupled with cycle analysis, the design rotational speed of the co-axially aligned turbomachine was determined as 100,000 rpm. Aerodynamic CFD analyses were conducted for the centrifugal compressor considering real gas properties. Preliminary test results show indirect evidence of compressor work reduction inherent to the supercritical CO2 gas turbine concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.