Effects of 5-hydroxytryptamine (5-HT) on EPSPs and EPSCs in the rat dorsolateral septal nucleus (DLSN) were examined in the presence of GABA(A) and GABA(B) receptor antagonists. Bath application of 5-HT (10 microm) for 5-10 min increased the amplitude of the EPSP and EPSC. (+/-)-8-hydroxy-2-(di-N-propylamino)tetralin hydrobromide (10 microm), an agonist for 5-HT1A and 5-HT7 receptors, did not facilitate the EPSP. alpha-Methyl-5-HT (10 microm), a 5-HT2 receptor agonist, increased the amplitude of the EPSC. Alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (10 microm) and 6-chloro-2-(1-piperazinyl)pyrazine (10 microm), selective 5-HT2B and 5-HT2C receptor agonists, respectively, had no effect on the EPSP. The 5-HT-induced facilitation of the EPSP was blocked by ketanserin (10 microm), a 5-HT2A/2C receptor antagonist. However, N-desmethylclozapine (10 microm), a selective 5-HT2C receptor antagonist, did not block the facilitation of the EPSP induced by alpha-methyl-5-HT. The inward current evoked by exogenous glutamate was unaffected by 5-HT. 5-HT (10 microm) and alpha-methyl-5-HT (10 microm) increased the frequency of miniature EPSPs (mEPSPs) without changing the mEPSP amplitude. The ratio of the paired pulse facilitation was significantly decreased by 5-HT and alpha-methyl-5-HT. The 5-HT-induced facilitation of the EPSP was blocked by calphostin C (100 nm), a specific protein kinase C (PKC) inhibitor, but not by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (10 microm), a protein kinase A inhibitor. Phorbol 12,13-dibutyrate (3 microm) mimicked the facilitatory effects of 5-HT. These results suggest that 5-HT enhances the EPSP by increasing the release of glutamate via presynaptic 5-HT2A receptors that link with PKC in rat DLSN neurons.
Intracellular and voltage-clamp studies were carried out to clarify the mechanism for spontaneous firing activity in neurons of the suprachiasmatic nucleus (SCN) of rat hypothalamic brain slices in vitro. SCN neurons displayed spontaneously firing action potentials that were preceded by a depolarizing pre-potential and followed by a short spike after-hyperpolarization (AHP). Injection of inward current with a duration longer than 50 ms resulted in a depolarizing voltage "sag" on hyperpolarizing electrotonic potentials. The inward rectification was depressed by bath application of caesium (1 mM) but not by barium (500 microM). SCN neurons also showed a rebound depolarization associated with spike discharge (anodal break) in response to relaxation of hyper polarizing current injection. The rebound depolarization was reduced by nominally zero calcium. Cadmium (500 microM), cobalt (1 mM) or caesium (1 mM) but not nicardipine also depressed the rebound depolarization. Under voltage-clamp conditions, hyperpolarizing steps to membrane potentials negative to approximately -60 mV caused an inward rectifier current, probably H current (IH), which showed no inactivation with time. Bath application of caesium (1-2 mM) suppressed IH. Caesium (2 mM) depressed the slope of the depolarizing spike pre-potential, resulting in a prolongation of the interspike interval of tonic firing neurons. We conclude that both the inward rectifier current, IH, and the low-threshold calcium current contribute to the spike prepotential of spontaneous action potentials in firing neurons of the rat SCN.
A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.