SummaryWhen starved, Bacillus subtilis undergoes asymmetric division to produce two cell types with different fates. The larger mother cell engulfs the smaller forespore, then nurtures it and, eventually, lyses to release a dormant, environmentally resistant spore. Driving these changes is a programme of transcriptional gene regulation. At the heart of the programme are s factors, which become active at different times, some only in one cell type or the other, and each directing RNA polymerase to transcribe a different set of genes. The activity of each s factor in the cascade is carefully regulated by multiple mechanisms. In some cases, novel proteins control both s factor activity and morphogenesis, co-ordinating the programme of gene expression with morphological change. These bifunctional proteins, as well as other proteins involved in s factor activation, and even precursors of s factors themselves, are targeted to critical locations, allowing the mother cell and forespore to communicate with each other and to co-ordinate their programmes of gene expression. This signalling can result in proteolytic s factor activation. Other mechanisms, such as an anti-s factor and, perhaps, proteolytic degradation, prevent s factors from becoming active in the wrong cell type. Accessory transcription factors modulate RNA polymerase activity at speci®c promoters. Negative feedback loops limit s factor production and facilitate the transition from one s factor to the next. Together, the mechanisms controlling s factor activity ensure that genes are expressed at the proper time and level in each cell type.
BackgroundComprehensive genomic sequencing (CGS) has the potential to revolutionize precision medicine for cancer patients across the globe. However, to date large-scale genomic sequencing of cancer patients has been limited to Western populations. In order to understand possible ethnic and geographic differences and to explore the broader application of CGS to other populations, we sequenced a panel of 415 important cancer genes to characterize clinically actionable genomic driver events in 201 Japanese patients with colorectal cancer (CRC).MethodsUsing next-generation sequencing methods, we examined all exons of 415 known cancer genes in Japanese CRC patients (n = 201) and evaluated for concordance among independent data obtained from US patients with CRC (n = 108) and from The Cancer Genome Atlas-CRC whole exome sequencing (WES) database (n = 224). Mutation data from non-hypermutated Japanese CRC patients were extracted and clustered by gene mutation patterns. Two different sets of genes from the 415-gene panel were used for clustering: 61 genes with frequent alteration in CRC and 26 genes that are clinically actionable in CRC.ResultsThe 415-gene panel is able to identify all of the critical mutations in tumor samples as well as WES, including identifying hypermutated tumors. Although the overall mutation spectrum of the Japanese patients is similar to that of the Western population, we found significant differences in the frequencies of mutations in ERBB2 and BRAF. We show that the 415-gene panel identifies a number of clinically actionable mutations in KRAS, NRAS, and BRAF that are not detected by hot-spot testing. We also discovered that 26% of cases have mutations in genes involved in DNA double-strand break repair pathway. Unsupervised clustering revealed that a panel of 26 genes can be used to classify the patients into eight different categories, each of which can optimally be treated with a particular combination therapy.ConclusionsUse of a panel of 415 genes can reliably identify all of the critical mutations in CRC patients and this information of CGS can be used to determine the most optimal treatment for patients of all ethnicities.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0387-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.