Disks made of hydroxyapatite, beta-tricalcium phosphate, carbonate apatite, tetracalcium phosphate, alpha-tricalcium phosphate, dicalcium phosphate dihydrate, and octacalcium phosphate were incubated in osteoclastic cell cultures for 2 days. The first five salts were sintered and the last two were compressed before incubation. Osteoclasts resorbed only the sintered carbonate apatite disks. However, osteoclasts were able to resorb octacalcium phosphate disks that were preincubated for 1 day in medium without cells, indicating that surface conditioning was important for osteoclastic resorption of this calcium phosphate. Although resorption did not occur, medium calcium and phosphorus changed to an appreciable extent after a 2-day incubation of beta-tricalcium phosphate, tetracalcium phosphate, alpha-tricalcium phosphate, and dicalcium phosphate dihydrate. These changes in the medium calcium and phosphate concentrations could explain why osteoclasts appeared to have lost their activity on these calcium phosphate disks and were not capable of resorbing them. With hydroxyapatite disks no changes were observed in the medium calcium and phosphorus before and after incubation. Moreover, the osteoclasts appeared to be essentially the same as with the sintered carbonate apatite disks and with bone slices used as a control. Nevertheless, no pits or lacunae were observed on the hydroxyapatite disks, indicating that sintered carbonate apatite should be superior to sintered hydroxyapatite as a bioresorbable bone substitute.
Regularly coiled carbon filaments have been obtained by the catalytic pyrolysis of acetylene at 350–750 °C using Ni plate and powder as a catalyst. Morphology and extension characteristics of the obtained coiled filaments were examined in some detail. The regularly coiled filaments have generally a 0.1–0.3 μm thickness, a 2–8 μm coil diameter, and a 0.1–5 mm coil length. The coiled filaments were always formed by the entwistness of two pair coils which grew in the same direction simultaneously from a diamond-shaped Ni seed. We have found that the coiled filaments could be elastically extended up to about three times versus the original coil length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.