The purpose of this paper is to demonstrate that a portfolio optimization model using the L 1 risk (mean absolute deviation risk) function can remove most of the difficulties associated with the classical Markowitz's model while maintaining its advantages over equilibrium models. In particular, the L 1 risk model leads to a linear program instead of a quadratic program, so that a large-scale optimization problem consisting of more than 1,000 stocks may be solved on a real time basis. Numerical experiments using the historical data of NIKKEI 225 stocks show that the L 1 risk model generates a portfolio quite similar to that of the Markowitz's model within a fraction of time required to solve the latter.portfolio optimization, L1 risk function, linear programming, Markowitz's model, single-factor model
We will propose a branch and bound algorithm for calculating a globally optimal solution of a portfolio construction/rebalancing problem under concave transaction costs and minimal transaction unit constraints. We will employ the absolute deviation of the rate of return of the portfolio as the measure of risk and solve linear programming subproblems by introducing (piecewise) linear underestimating function for concave transaction cost functions. It will be shown by a series of numerical experiments that the algorithm can solve the problem of practical size in an efficient manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.