1991
DOI: 10.1287/mnsc.37.5.519
|View full text |Cite
|
Sign up to set email alerts
|

Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market

Abstract: The purpose of this paper is to demonstrate that a portfolio optimization model using the L 1 risk (mean absolute deviation risk) function can remove most of the difficulties associated with the classical Markowitz's model while maintaining its advantages over equilibrium models. In particular, the L 1 risk model leads to a linear program instead of a quadratic program, so that a large-scale optimization problem consisting of more than 1,000 stocks may be solved on a real time basis. Numerical experiments usin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
602
0
24

Year Published

2003
2003
2017
2017

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 1,262 publications
(631 citation statements)
references
References 11 publications
5
602
0
24
Order By: Relevance
“…Portfolio optimization models based on alternative risk measures have been introduced in the literature such as semivariance (Markowitz 1959), lower partial moment (Bawa 1975), mean absolute deviation (Konno and Yamazaki 1991), minimax (Young 1998), VaR (Ahn et al 1999;Basak and Shapiro 2001), CVaR (Rockafellar and Uryasev 2000), coherent risk measures (Artzner et al 1999), convex risk measures Frittelli and Rosazza Gianin 2002), generalized deviation measures (Rockafellar et al 2006), proper and ideal risk measures (Stoyanov et al 2007;Rachev et al 2008a), and have been widely applied in practice (Dembo and Rosen 2000;Ortobelli et al 2005). Among these, we address in this section the minimization of VaR and CVaR in portfolio selection.…”
Section: The Modelsmentioning
confidence: 99%
“…Portfolio optimization models based on alternative risk measures have been introduced in the literature such as semivariance (Markowitz 1959), lower partial moment (Bawa 1975), mean absolute deviation (Konno and Yamazaki 1991), minimax (Young 1998), VaR (Ahn et al 1999;Basak and Shapiro 2001), CVaR (Rockafellar and Uryasev 2000), coherent risk measures (Artzner et al 1999), convex risk measures Frittelli and Rosazza Gianin 2002), generalized deviation measures (Rockafellar et al 2006), proper and ideal risk measures (Stoyanov et al 2007;Rachev et al 2008a), and have been widely applied in practice (Dembo and Rosen 2000;Ortobelli et al 2005). Among these, we address in this section the minimization of VaR and CVaR in portfolio selection.…”
Section: The Modelsmentioning
confidence: 99%
“…Opr贸cz opracowania liniowego modelu wyboru optymalnego portfela inwestycyjnego autorzy wykazali r贸wnie偶, 偶e zaproponowany przez nich model MAD przy za艂o偶eniu o normalnym rozk艂adzie st贸p zwrotu jest ekwiwalentem kwadratowego modelu 艣rednia-ryzyko. 艢rednie odchylenie bezwzgl臋dne dla danej sp贸艂ki j definiowane jest jako suma iloczyn贸w prawdopodobie艅stwa wyst膮pienia t-tej mo偶liwej warto艣ci stopy zwrotu (p t ) i warto艣ci bezwzgl臋dnych r贸偶nic stopy zwrotu sp贸艂ki j-tej w okresie t (r j,t ) oraz 艣redniej stopy zwrotu sp贸艂ki j-tej (r j ) [Konno, Yamazaki 1991]: …”
Section: Model Wyboru Portfela Inwestycyjnego Ze 艣Rednim Odchyleniem unclassified
“…This is the case for instance of Dembo, Mulvey and Zenios [10] (with network掳ow models), Konno and Yamazaki [16] (with an absolute deviation approach to the measure of risk, embedded in linear programming models), Takehara [26] (with an interior point algorithm), and Bienstock [2] (with a 'branch and cut' approach). Dahl, Meeraus and Zenios [8], Takehara [26] and Hamza and Janssen [12] discuss some of this work.…”
Section: Solution Approachesmentioning
confidence: 99%