PC12 cells, which differentiate morphologically and biochemically into sympathetic neuron-like cells when treated with nerve growth factor, also respond to fibroblast growth factor. Some of the changes induced by fibroblast growth factor are similar to those seen after nerve growth factor treatment. Specifically, pituitary fibroblast growth factor causes the formation of processes initially comparable to those produced by nerve growth factor. However, in contrast to the outgrowth induced by nerve growth factor, which continues for several days, the outgrowth of processes induced by fibroblast growth factor ceases after about 3 days, even though fresh fibroblast growth factor is added. After about 6 days the processes induced by fibroblast growth factor have virtually disappeared. In this regard the processes induced by fibroblast growth factor are very similar to those induced by dibutyryl cyclic adenosine 3':5'-monophosphate (dBcAMP). The addition of nerve growth factor and fibroblast growth factor together appears to produce a synergistic effect on process formation, as does the simultaneous addition of nerve growth factor and dBcAMP. Cells pretreated (or primed) with nerve growth factor are able to regenerate processes much more rapidly in the presence of nerve growth factor than cells which have not been pretreated. When fibroblast growth factor is added to cells primed with nerve growth factor, more rapid regeneration of processes also occurs. The regeneration of neurites in response to either factor is blocked by the addition of an inhibitor of methylation. The process formation induced by fibroblast growth factor is preceded, as is the outgrowth in response to nerve growth factor treatment, by an induction of ornithine decarboxylase, a decrease in the phosphorylation of a specific cytoplasmic protein, and an increase in the phosphorylation of a specific non-histone nuclear protein. The effects of fibroblast growth factor and of nerve growth factor on ornithine decarboxylase are additive. Fibroblast growth factor does not cause an increase in the activity of acetylcholinesterase; nerve growth factor does. Fibroblast growth factor does not appear to be acting through the nerve growth factor receptor. The binding of iodinated nerve growth factor to PC12 cells is specific and is not inhibited by the presence of fibroblast growth factor. In addition, anti-nerve growth factor serum does not interfere with the action of fibroblast growth factor.(ABSTRACT TRUNCATED AT 400 WORDS)
Abstract. Cells of the rat pheochromocytoma clone PC12 possess receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF), thus enabling the study of the interaction of these receptors in the regulation of proliferation and differentiation. Treatment of the cells with NGF induces a progressive and nearly total decrease in the specific binding of EGF beginning after 12 h and completed within 4 d. Three different measures of receptor show that the decreased binding capacity represents, in fact, a decreased amount of receptor: (a) affinity labeling of PC12 cell membranes by cross-linking of receptorbound ~25I-EGF showed a 60-90% decrease in the labeling of 170-and 150-kD receptor bands in cells treated with NGF for 1-4 d; (b) EGF-dependent phosphorylation of a src-related synthetic peptide or EGF receptor autophosphorylation with membranes from NGF-differentiated cells showed a decrease of 80 and 90% in the tyrosine kinase activity for the exogenous substrate and for receptor autophosphorylation, respectively; (c) analysis of 35S-labeled glycoproteins isolated by wheat germ agglutinin-Sepharose chromatography from detergent extracts of PC12 membranes showed a 70-90% decrease in the 170-kD band in NGF-differentiated cells. These findings permit the hypothesis that long-term heterologous down-regulation of EGF receptors by NGF in PC12 cells is mediated by an alteration in EGF receptor synthesis. It is suggested that this heterologous down-regulation is part of the mechanism by which differentiating cells become insensitive to mitogens.T HE rat pheochromocytoma clone PC12 has been used as a model of neuronal differentiation because the cells acquire neuronal properties and stop dividing in response to nerve growth factor (NGF) ~ (Greene and Tischler, 1976). The differentiation induced by NGF appears to be reversible, but, except for this, the changes that occur lead to cells with the phenotype of sympathetic neurons (Kimhi, 1981). The PC12 cells, of course, carry NGF receptors (Herrup and Thoenen, 1979;Landreth and Shooter, 1980) and the binding of NGF to these specific receptors triggers many and diverse arrays of cellular responses, including both shortterm, rapid membranal changes, and long-term alterations in cell properties associated with changes in transcription (Guroff, 1983). Among these responses, NGF-induced differentiation in PC12 involves a transition from a mitotic to a nonmitotic state.In this regard, it was of interest to observe that the PCI2 ceils also have receptors for epidermal growth factor (EGF) (Huff and Guroff, 1979;Huff et al., 1981;Boonstra et al., 1985). This peptide is a potent mitogen for many of the cells I. Abbreviations used in this paper: EGF, epidermal growth factor; NGF, nerve growth factor. with which it interacts, and is a mild mitogen for PC12 (Huff et al., 1981). Since the cells, then, have receptors for both a differentiating agent and a mitogen, experiments in this laboratory have been designed to explore what happens when the cells are treated with both ag...
Report prepared by ~. Lernmark 1, J. L. Molenaar 2, W. A. M. van Beers 2' Y. Yamaguchi3; S. Nagataki 3' J. Ludvigsson 4 and N. K. Maclaren s on behalf of the Immunology and Diabetes Workshops and participating laboratories*
Clinical and experimental data suggest that thyroid hormone affects the actions of catecholamine (CA). However, the serum or tissue levels of CA during thyroid disorders have not been well defined. Accordingly, we investigated the levels of CA and their metabolites in the cardiac muscle, the cerebral cortex, and the plasma of rats with hyperthyroidism and hypothyroidism versus euthyroid animals. The Neurochem analyzer system (ESA, Inc., Bedford, MA) was used in such determinations. The cardiac muscles of hyperthyroid rats exhibited a 16% decrease in the levels of 1-dopa, 3-methoxytyramine (3-MT) and homovanillic acid (HVA) as compared with those in euthyroid rats. The levels of norepinephrine (NE) in cardiac muscle of these rats increased significantly (5.2-fold) relative to the levels in euthyroid rats. NE was undetectable in the cardiac muscles of the hypothyroid rats. Epinephrine (E) and dopamine (DA) were not detected in the cardiac muscles of the rats with either thyroid disorder. Levels of E and 3,4-dihydroxymandelic acid (DOPEG) were detected only in the cerebral cortex of hyperthyroid rats. The cerebral cortex levels of 3-methyoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), metanephrine (MN), and homovanillic acid (HVA) were all significantly increased in the hyperthyroid versus the euthyroid rats. The cerebral cortex levels of DA, NE, normetanephrine (NMN), and VMA in the hyperthyroid rats all showed a significant decrease. Levels of NE, NMN, and DOPAC in the cerebral cortex increased significantly in the hypothyroid rats. The level of VMA was undetectable in cerebral cortex of such animals. Data from studies on cardiac muscle and cerebral cortex indicate that the changes in CA and CA metabolites are responsible in part for the cardiovascular and the central nervous system symptoms observed in hyperthyroidism and hypothyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.