Nanoscale lithographic technologies have been intensively studied for the development of the next generation of semiconductor manufacturing practices. While mask-less/direct-write electron beam (EB) lithography methods serve as a candidate for the upcoming 10-nm node approaches and beyond, it remains difficult to achieve an appropriate level of throughput. Several innovative features of the multiple EB system that involve the use of a thermionic source have been proposed. However, a blanking array mechanism is required for the individual control of multiple beamlets whereby each beamlet is deflected onto a blanking object or passed through an array. This paper reviews the recent developments of our application studies on the development of a high-speed massively parallel electron beam direct write (MPEBDW) lithography. The emitter array used in our study includes nanocrystalline-Si (nc-Si) ballistic electron emitters. Electrons are drifted via multiple tunnelling cascade transport and are emitted as hot electrons. The transport mechanism allows one to quickly turn electron beamlets on or off. The emitter array is a micro-electro-mechanical system (MEMS) that is hetero-integrated with a separately fabricated active-matrix-driving complementary metal-oxide semiconductor (CMOS) large-scale integration (LSI) system that controls each emitter individually. The basic function of the LSI was confirmed to receive external writing bitmap data and generate driving signals for turning beamlets on or off. Each emitted beamlet (10 Â 10 μm 2) is converged to 10 Â 10 nm 2 on a target via the reduction electron optic system under development. This paper presents an overview of the system and characteristic evaluations of the nc-Si emitter array. We examine beamlets and their electron emission characteristics via a 1:1 exposure test.
This paper describes the active control of sound transmission through a clamped rectangular plate by using piezoelectric ceramics as actuators and sensors. Optimal use of the piezoelectric ceramic actuator is investigated theoretically by using the transfer function from incident sound pressure to radiated sound pressure and the first order approximated damping ratio. By applying direct velocity feedback control by five pieces of the actuators, substantial reduction of peak level at eigen mode frequency is obtained below the frequency range of about 1500 Hz. The use of piezoelectric ceramics as actuators and as sensors fails in the direct velocity feedback control experiment, but has potential for the direct position feedback control experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.