Rates for the reaction of nitric oxide with several ferric heme proteins and model compounds have been measured. The NO combination rates are markedly affected by the presence or absence of distal histidine. Elephant myoglobin in which the E7 distal histidine has been replaced by glutamine reacts with NO 500-1000 times faster than do the native hemoglobins or myoglobins. By contrast, there is no difference in the CO combination rate constants of sperm whale and elephant myoglobins. Studies on ferric model compounds for the R and T states of hemoglobin indicate that their NO combination rate constants are similar to those observed for the combination of CO with the corresponding ferro derivatives. The last observation suggests that the presence of an axial water molecule at the ligand binding site of ferric hemoglobin A prevents it from exhibiting significant cooperativity in its reactions with NO.
A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described. The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin, which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations. Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes. The changes are quantitatively described using the pixel height histogram and window size grain analysis.
Amino acid sequence determination of elephant myoglobin revealed the presence of the unusual substitution E7 His leads to Gln. Stereochemical analyses suggest that the most suitable residue which can functionally substitute for His at this position in vertebrate globins is Gln. Physiochemical studies imply that the slower rate of autooxidation of elephant myoglobin is the result of this substitution which may confer some selective advantage on the species. Comparative sequence data of paenungulate myoglobins suggest that the His leads to Gln mutation probably occurred in an ancestor of Elephantinae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.