We identified a mutation in the ceruloplasmin (Cp) gene in a Japanese family with aceruloplasminemia, some of whose members showed extrapyramidal disorders, cerebellar ataxia, and diabetes mellitus. A post-mortem study of the proband revealed excessive iron deposition mainly in the brain, liver and pancreas. The G to A transition at the splice acceptor site introduces a premature termination codon at the amino acid position 991 by defective splicing, thereby truncating the carboxyl terminus of Cp in affected individuals. We conclude that the mutation in the Cp gene is associated with systemic hemosiderosis in humans.
In human subjects, stretch applied to ankle dorsiflexors elicited three bursts of reflex activity in the tibialis anterior (TA) muscle (labelled M1, M2 and M3) at mean onset latencies of 44, 69 and 95 ms, respectively. The possibility that the later of these reflex bursts is mediated by a transcortical pathway was investigated. The stretch evoked a cerebral potential recorded from the somatosensory cortex at a mean onset latency of 47 ms in nine subjects. In the same subjects a compound motor‐evoked potential (MEP) in the TA muscle, evoked by magnetic stimulation of the motor cortex, had a mean onset latency of 32 ms. The M1 and the M2 reflexes thus had too short a latency to be caused by a transcortical pathway (minimum latency, 79 ms (47 + 32)), whereas the later part of the M2 and all of the M3 reflex had a sufficiently long latency. When the transcranial magnetic stimulation was timed so that the MEP arrived in the TA muscle at the same time as the M1 or M2 reflexes, no extra increase in the potential was observed. However, when the MEP arrived at the same time as the M3 reflex a significant (P < 0.01) extra‐facilitation was observed in all twelve subjects investigated. Peaks evoked by transcranial magnetic stimulation in the post‐stimulus time histogram of the discharge probability of single TA motor units (n= 28) were strongly facilitated when they occurred at the same time as the M3 response. This was not the case for the first peaks evoked by electrical transcranial stimulation in any of nine units investigated. We suggest that these findings are explained by an increased cortical excitability following TA stretch and that this supports the hypothesis that the M3 response in the TA muscle is ‐ at least partly ‐ mediated by a transcortical reflex.
A hereditary ceruloplasmin deficiency associated with severe iron deposition in visceral organ and brain tissues found on histopathological examination at autopsy is discussed. Three siblings of consanguineous Japanese parents were studied. Their clinical symptoms were progressive dementia, extrapyramidal disorders, cerebellar ataxia, and diabetes mellitus, all of which appeared when they were between 30 and 50 years old. All had serum ceruloplasmin deficiencies and increased serum ferritin concentrations. The dentate nucleus, thalamus, putamen, caudate nucleus, and liver of each one showed low signal intensities on T1- and T2-weighted magnetic resonance images. Examination of the central nervous system revealed severe destruction of the basal ganglia and dentate nucleus, with considerable iron deposition in neuronal and glial cells, whereas the cerebral cortex showed mild iron deposition in glial cells without neuronal involvement. An electron microscopic study with energy-dispersive x-ray analysis showed iron depositions in the hepatocytes, of both the neural and glial cells of the brain. We consider this a new disease entity because of the primary ceruloplasmin deficiency.
The aim of the study was to investigate whether impaired control of transmission in spinal inhibitory pathways contributes to the functional disability of patients with spasticity. To this end, transmission in the pathways mediating disynaptic reciprocal Ia inhibition and presynaptic inhibition was investigated in 23 healthy subjects and 20 patients with spastic multiple sclerosis during ankle dorsiflexion and plantar flexion. In healthy subjects, but not in spastic patients, the soleus H reflex was depressed at the onset of dorsiflexion (300 ms rise time, 20% of maximal voluntary effort). At the onset of plantar flexion, the soleus H reflex was more facilitated in the healthy subjects than in the patients. The H reflex increased more with increasing level of tonic plantar flexion and decreased more with dorsiflexion in the healthy subjects than in the spastic patients. Transmission in the disynaptic Ia reciprocal inhibitory pathway from ankle dorsiflexors to plantar flexors was investigated by conditioning the soleus H reflex by previous stimulation of the common peroneal nerve (conditioning-test interval 2-3 ms; stimulation intensity 1.05 times the motor response threshold). At the onset of dorsiflexion, stimulation of the common peroneal nerve evoked a significantly larger inhibition than at rest in the healthy subjects but not in the spastic patients. At the onset of plantar flexion the inhibition decreased in the healthy subjects, but because only weak inhibition was observed at rest in the patients it was not possible to determine whether a similar decrease occurred in this group. There were no differences in the modulation of inhibition during tonic plantar flexion and dorsiflexion in the two populations. Presynaptic inhibition of Ia afferents terminating on soleus motor neurones was evaluated from the monosynaptic Ia facilitation of the soleus H reflex evoked by femoral nerve stimulation. Femoral nerve facilitation was decreased at the onset of dorsiflexion and increased at the onset of plantar flexion in the healthy subjects and patients, but the changes were significantly greater in the healthy subjects. There was no difference between the two populations in the modulation of presynaptic inhibition during tonic plantar flexion and dorsiflexion. It is suggested that the abnormal regulation of disynaptic reciprocal inhibition and presynaptic inhibition in patients with spasticity is responsible for the abnormal modulation of stretch reflexes in relation to voluntary movement in these patients. Lack of an increase in reciprocal inhibition and presynaptic inhibition at the onset of dorsiflexion may be responsible for the tendency to elicitation of unwanted stretch reflex activity and co-contraction of antagonistic muscles in patients with spasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.