Sensory feedback plays a major role in the regulation of the spinal neural locomotor circuitry in cats. The present study investigated whether sensory feedback also plays an important role during walking in 20 healthy human subjects, by arresting or unloading the ankle extensors 6 deg for 210 ms in the stance phase of gait. During the stance phase of walking, unloading of the ankle extensors significantly (P < 0·05) reduced the soleus activity by 50 % in early and mid‐stance at an average onset latency of 64 ms. The onset and amplitude of the decrease in soleus activity produced by the unloading were unchanged when the common peroneal nerve, which innervates the ankle dorsiflexors, was reversibly blocked by local injection of lidocaine (n= 3). This demonstrated that the effect could not be caused by a peripherally mediated reciprocal inhibition from afferents in the antagonist nerves. The onset and amplitude of the decrease in soleus activity produced by the unloading were also unchanged when ischaemia was induced in the leg by inflating a cuff placed around the thigh. At the same time, the group Ia‐mediated short latency stretch reflex was completely abolished. This demonstrated that group Ia afferents were probably not responsible for the decrease of soleus activity produced by the unloading. The findings demonstrate that afferent feedback from ankle extensors is of significant importance for the activation of these muscles in the stance phase of human walking. Group II and/or group Ib afferents are suggested to constitute an important part of this sensory feedback.
The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate.
In human subjects, stretch applied to ankle dorsiflexors elicited three bursts of reflex activity in the tibialis anterior (TA) muscle (labelled M1, M2 and M3) at mean onset latencies of 44, 69 and 95 ms, respectively. The possibility that the later of these reflex bursts is mediated by a transcortical pathway was investigated. The stretch evoked a cerebral potential recorded from the somatosensory cortex at a mean onset latency of 47 ms in nine subjects. In the same subjects a compound motor‐evoked potential (MEP) in the TA muscle, evoked by magnetic stimulation of the motor cortex, had a mean onset latency of 32 ms. The M1 and the M2 reflexes thus had too short a latency to be caused by a transcortical pathway (minimum latency, 79 ms (47 + 32)), whereas the later part of the M2 and all of the M3 reflex had a sufficiently long latency. When the transcranial magnetic stimulation was timed so that the MEP arrived in the TA muscle at the same time as the M1 or M2 reflexes, no extra increase in the potential was observed. However, when the MEP arrived at the same time as the M3 reflex a significant (P < 0.01) extra‐facilitation was observed in all twelve subjects investigated. Peaks evoked by transcranial magnetic stimulation in the post‐stimulus time histogram of the discharge probability of single TA motor units (n= 28) were strongly facilitated when they occurred at the same time as the M3 response. This was not the case for the first peaks evoked by electrical transcranial stimulation in any of nine units investigated. We suggest that these findings are explained by an increased cortical excitability following TA stretch and that this supports the hypothesis that the M3 response in the TA muscle is ‐ at least partly ‐ mediated by a transcortical reflex.
The cerebral activation during bicycle movements was investigated by oxygen-15-labelled H2O positron emission tomography (PET) in seven healthy human subjects. Compared to rest active bicycling significantly activated sites bilaterally in the primary sensory cortex, primary motor cortex (M1) and supplementary motor cortex (SMA) as well as the anterior part of cerebellum. Comparing passive bicycling movements with rest, an almost equal activation was observed. Subtracting passive from active bicycle movements, significant activation was only observed in the leg area of the primary motor cortex and the precuneus, but not in the primary sensory cortex (S1). The M1 activation was positively correlated (alpha=0.75-0.85, t=6.4, P<10(-5)) with the rate of the active bicycle movements. Imagination of bicycle movements compared to rest activated bilaterally sites in the SMA. It is suggested that the higher motor centres, including the primary and supplementary motor cortices as well as the cerebellum, take an active part in the generation and control of rhythmic motor tasks such as bicycling.
The effect of transcranial magnetic stimulation (TMS) on the soleus H reflex was investigated in the stance phase of walking in seventeen human subjects. For comparison, measurements were also made during quiet standing, matched tonic plantar flexion and matched dynamic plantar flexion. During walking and dynamic plantar flexion subliminal (0.95 times threshold for a motor response in the soleus muscle) TMS evoked a large short‐latency facilitation (onset at conditioning‐test interval: −5 to −1 ms) of the H reflex followed by a later (onset at conditioning‐test interval: 3–16 ms) long‐lasting inhibition. In contrast, during standing and tonic plantar flexion the short‐latency facilitation was either absent or small and the late inhibition was replaced by a long‐lasting facilitation. When grading the intensity of TMS it was found that the short‐latency facilitation had a lower threshold during walking than during standing and tonic plantar flexion. Regardless of the stimulus intensity the late facilitation was never seen during walking and dynamic plantar flexion and the late inhibition was not seen, except for one subject, during standing and tonic plantar flexion. A similar difference in the threshold of the short‐latency facilitation between walking and standing was not observed when the magnetic stimulation was replaced by transcranial electrical stimulation. The lower threshold of the short‐latency facilitation evoked by magnetic but not electrical transcranial stimulation during walking compared with standing suggests that cortical cells with direct motoneuronal connections increase their excitability in relation to human walking. The significance of the differences in the late facilitatory and inhibitory effects during the different tasks is unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.