Microparticles of radioactive cesium (Cs)-bearing silicate glass emitted from the Fukushima Daiichi nuclear power plant were investigated mainly using state-of-the-art energy-dispersive X-ray spectroscopy in scanning transmission electron microscopes. Precise elemental maps of the particles were obtained using double silicon drift detectors with a large collection angle of X-rays, and qualitative elemental analysis was performed using high-resolution X-ray spectroscopy with a microcalorimetry detector. Beside the substantial elements (O, Si, Cl, K, Fe, Zn, Rb, Sn and Cs) as previously reported, Mn and Ba were also common, though their amounts were small. The atomic ratios of the substantial elements were not the same but varied among individual particles. Fe and Zn were relatively homogeneously distributed, whereas the concentration of alkali ions varied radially. Generally, Cs was rich and K and Rb were poor outward of the particles but the degree of such radial dependence was considerably different among the particles. A concentration of Sn on the particle surface was observed. High-resolution imaging indicated the formation of SnO (cassiterite) nanocrystals on the surface. Synthesis of the bulk glass with a similar composition to the microparticles was attempted by quenching the silicate melt from ∼1600°C. However, homogeneous silicate glass like that of the microparticles could not be obtained due to the segregation of nano-spherules rich in Fe and Zn, suggesting that the microparticles were formed in a very specific condition in the nuclear reactor.
Radioactive soil particles several tens of micrometers in size were collected from litter soil in the radiation contaminated area by the Fukushima nuclear plant accident and characterized using electron and X-ray microanalyses. The radioactive particles were discriminated by autoradiography using imaging plates (IP) on which microgrids were formed by laser ablation in order to find the particles under microscopy. Fifty radioactive particles were identified and classified into three types from their morphology and chemical composition, namely: (1) aggregates of clay minerals, (2) organic matter containing clay mineral particulates, and (3) weathered biotite originating from local granite. With respect to the second type, dissolution of the organic matter did not reduce the radiation, suggesting that the radionuclides were also fixed by the clay minerals. The weathered biotite grains have a plate-like shape with well-developed cleavages inside the grains, and kaolin group minerals and goethite filling the cleavage spaces. The reduction of the radiation intensity was measured before and after the trimming of the plate edges using a focused ion beam (FIB), to examine whether radioactive cesium primarily sorbed at frayed edges. The radiation was attenuated in proportion to the volume decrease by the edge trimming, implying that radioactive cesium was sorbed uniformly in the porous weathered biotite.
Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.