The absolute asymmetric photoreaction (AAP) of racemic aliphatic amino acids, such as alanine (Ala) and leucine (Leu), by left- and right-handed circularly polarized light (l- and r-CPL) irradiation was investigated in aqueous solutions at various pHs, by using the Onuki-type polarizing undulator installed in an electron storage ring. The magnitude of the optical purity (op) generated and the enantiomer-enriching mechanism operative in the AAP were found to be entirely dependent on the ionic state (and thus pH) of the amino/carboxylic acid moieties. At pH 1, the op of Ala and Leu determined by circular dichroism (CD) spectral measurement gradually developed with CPL irradiation, according to Kagan's equation. In contrast, irradiation at pH 7 gave op's much smaller than the theoretical values predicted by Kagan's equation. However, it turned out that the photodecomposition at pH 7 produces the corresponding alpha-hydroxycarboxylic acids stereoselectively, the CD sign of which is just opposite to that of the remaining amino acid, thus affording the apparently small op. It is concluded that, irrespective of solution pH, the AAP of amino acid proceeds upon CPL irradiation. At pH 1, the photodecomposition of valine, Leu, and isoleucine occurs via a Norrish type II mechanism, which is also applicable to other amino acids possessing a gamma-hydrogen. In the case of amino acids lacking a gamma-hydrogen, such as glycine and Ala, the photodecomposition mechanism is a photodeamination/hydroxylation and a Norrish type I reaction. At pH 7, the main photoproducts were ammonia and alpha-hydroxycarboxylic acids that were produced via photodeamination.
It has been proposed that the origin of biological homochirality may be the result of irradiation of a racemic sample of amino acids by circularly polarized light (CPL). To determine the mechanism of enantiomeric enrichment, the irradiation of aliphatic amino acids by CPL was undertaken. An enantiomerically enriched sample (e.g., L isomer enrichment from r-CPL) was found to result from the preferential excitation/decomposition of one enantiomer over another via a Norrish Type II mechanism (leucine, valine, and isoleucine), with the enantiomeric excess dependent on the degree of protonation of the amino/carboxylic acid moiety.
Microtextured polydimethylsiloxane sheets exhibit an exceptionally low reflectance of ≲0.0005 across the entire thermal infrared wavelengths while maintaining high resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.