Basic fibroblast growth factor (FGF-2), an important modulator of cartilage and bone growth and differentiation, is expressed and regulated in osteoblastic cells. To investigate the role of FGF-2 in bone, we examined mice with a disruption of the Fgf2 gene. Measurement of trabecular bone architecture of the femoral metaphysis of Fgf2 +/+ and Fgf2 -/-adult mice by micro-CT revealed that the platelike trabecular structures were markedly reduced and many of the connecting rods of trabecular bone were lost in the Fgf2 -/-mice. Dynamic histomorphometry confirmed a significant decrease in trabecular bone volume, mineral apposition, and bone formation rates. In addition, there was a profound decreased mineralization of bone marrow stromal cultures from Fgf2 -/-mice. This study provides strong evidence that FGF-2 helps determine bone mass as well as bone formation.
To clarify the relationship between the changes of trabecular bone turnover and bone marrow cell development during mechanical unloading and reloading, we performed experiments with tail-suspended mice. At 8 weeks of age, 150 male ddY mice were divided into three body weight-matched groups. Mice of group 1 were euthanized at the start of tail suspension (day 0) as a baseline control. The mice of group 2 were subjected to hindlimb unloading by tail suspension for 14 days and reloading for the subsequent 14 days. The mice of group 3 were normally loaded as age-matched controls. Mice of groups 2 and 3 were sacrificed at 7, 14, and 28 days after the start of the experiment. In the first experiment (histomorphometric study of tibiae), unloading for 7 and 14 days and reloading for the subsequent 14 days significantly decreased the bone volume compared with that in the age-matched controls, respectively. Unloading for 7 and 14 days also significantly reduced the bone formation rate (BFR/BS), respectively, but reloading for the subsequent 14 days restored BFR/BS to the control level. While the unloading for 7 and 14 days significantly increased both the osteoclast surface (Oc.S/BS) and the osteoclast number (Oc.N/ BS), the reloading for the subsequent 14 days decreased Oc.S/BS and Oc.N/BS, respectively. In the second experiment (bone marrow cell culture study of tibiae), unloading for 7 and 14 days reduced the adherent stromal cell number, without significance. Unloading for 7 days significantly decreased the mineralized nodule formation. Reloading for the subsequent 14 days markedly increased the adherent stromal cell number and the mineralized nodule formation. Unloading for 7 days significantly increased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. These data clearly demonstrate that unloading reduces bone formation and increases bone resorption, and subsequent reloading restores reduced bone formation and suppresses increased bone resorption, closely associated with the changes in adherent stromal cell number, mineralized nodule formation, and the number of TRAP-positive multinucleated cells. (J Bone Miner Res 1999;14:1596-1604)
To clarify the role of nitric oxide (NO) in regulation of bone metabolism in response to skeletal loading, we examined inducible NO synthase (iNOS) gene knockout mice in the tail-suspension model. Histomorphometric analyses of proximal tibias revealed that 7 days of tail suspension decreased the bone volume (BV/TV) and bone formation rate (BFR/BS) and increased the osteoclast surface (Oc.S/BS) in mice with all iNOS genotypes. Both iNOS؉/؉ and iNOS ؉/؊ mice responded to subsequent 14-day reloading, with increases in BV/TV and BFR/BS and a decrease in Oc.S/BS, whereas these responses were abolished in iNOS ؊/؊ mice. The osteoblasts flattened after tail suspension appeared cuboidal during subsequent reloading. Immunoreactivity for iNOS was detected in these osteoblasts and osteocytes by immunohistochemistry. These defective responses after reloading were rescued in iNOS
This study compared radiological and clinical results of Mallory-Head (Biomet, Warsaw, Indiana) cementless total hip arthroplasty (THA) by anatomical (AP group) or high cup placement (HP group) for Crowe I to III developmental dysplasia of the hip. Of the 68 hips studied, 43 hips were available for 15.3-year follow-up. Ten cups were placed at anatomical center with bulk bone grafting, and 33 cups were at high hip center without bulk bone grafting. No acetabular or femoral components showed loosening in either group. One standard polyethylene liner in a highly placed cup was revised due to excessive wear after 11 years. The average rate of polyethylene wear was 0.128 mm/year in the AP group and 0.148 mm/year in the HP group (except for the revision case). The extent of grafted bone coverage was 34.6% in the AP group. Hip center height was 24.5 mm from the inter-teardrop line in the HP group. The center of the hip horizontal location in the AP group (24.5 mm) and HP group (26.4 mm) was significantly shorter than in normal hips (35.6 mm). Postoperative center-edge angle was 11° (except grafted bone) in the AP group and 25° in the HP group. Mean Harris Hip Score in the AP group improved from 38 points preoperatively to 82 points postoperatively and in the HP group improved from 40 points preoperatively to 88 points postoperatively. Survivorship was 100% in the AP group and 97% in the HP group. Our results indicate that moderate high cup placement without bulk bone grafting at a horizontal locus more medial than that of a normal hip is an alternative durable solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.