Observations of changes in the properties of ocean waters have been restricted to surface or intermediate-depth waters, because the detection of change in bottom water is extremely difficult owing to the small magnitude of the expected signals. Nevertheless, temporal changes in the properties of such deep waters across an ocean basin are of particular interest, as they can be used to constrain the transport of water at the bottom of the ocean and to detect changes in the global thermohaline circulation. Here we present a comparison of a trans-Pacific survey completed in 1985 (refs 4, 5) and its repetition in 1999 (ref. 6). We find that the deepest waters of the North Pacific Ocean have warmed significantly across the entire width of the ocean basin. Our observations imply that changes in water properties are now detectable in water masses that have long been insulated from heat exchange with the atmosphere.
Large-scale silver nanowire (AgNW) mesh films have received increasing attention as new transparent conductive films used in various printed devices. However, there are two crucial issues in implementing AgNWs that need to be addressed: (1) strong adhesion between AgNW film and substrate and (2) high conductivity with short treatment time for low-cost printed technology. Here, a high-intensity pulsed light (HIPL) sintering technique, which provides extreme heating locally in the AgNW film and at the interface between the film and polymer substrate, sinters the AgNW film to produce high conductivity with strong adhesion on the substrate. Importantly, light intensity, exposure time, and AgNW amount can be adjusted simply to form films that meet specific device needs. A flexible AgNW film with sheet resistance of 19 U sq À1 and transmittance of 83% at 550 nm is obtained with only one-step on a polyethylene terephthalate substrate with a light intensity of 1.14 J cm À2 under an exposure time of only 50 ms. The film can endure multiple peeling tests, which will play an important role in printed electronics.
The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.