The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally
The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but natural food-falls have been rarely observed. Here were report on the first observations of three large ‘fish-falls’ on the deep-sea floor: a whale shark (Rhincodon typus) and three mobulid rays (genus Mobula). These observations come from industrial remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported moderate communities of scavenging fish (up to 50 individuals per carcass), mostly from the family Zoarcidae, which appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m−2d−1, equivalent to ∼4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary productivity in the study area.
For thousands of years humankind has sought to explore our oceans. Evidence of this early intrigue dates back to 130,000BCE, but the advent of remotely operated vehicles (ROVs) in the 1950s introduced technology that has had significant impact on ocean exploration. Today, ROVs play a critical role in both military (e.g. retrieving torpedoes and mines) and salvage operations (e.g. locating historic shipwrecks such as the RMS Titanic), and are crucial for oil and gas (O&G) exploration and operations. Industrial ROVs collect millions of observations of our oceans each year, fueling scientific discoveries. Herein, we assembled a group of international ROV experts from both academia and industry to reflect on these discoveries and, more importantly, to identify key questions relating to our oceans that can be supported using industry ROVs. From a long list, we narrowed down to the 10 most important questions in ocean science that we feel can be supported (whole or in part) by increasing access to industry ROVs, and collaborations with the companies that use them. The questions covered opportunity (e.g. what is the resource value of the oceans?) to the impacts of global change (e.g. which marine ecosystems are most sensitive to anthropogenic impact?). Looking ahead, we provide recommendations for how data collected by ROVs can be maximised by higher levels of collaboration between academia and industry, resulting in win-win outcomes. What is clear from this work is that the potential of industrial ROV technology in unravelling the mysteries of our oceans is only just beginning to be realised. This is particularly important as the oceans are subject to increasing impacts from global change and industrial exploitation. The coming decades will represent an important time for scientists to partner with industry that use ROVs in order to make the most of these 'eyes in the sea'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.