The SARS-CoV-2 virus and COVID-19 illness are driving a global crisis. Governments have responded by restricting human movement, which has reduced economic activity. These changes may benefit biodiversity conservation in some ways, but in Africa, we contend that the net conservation impacts of COVID-19 will be strongly negative. Here, we describe how the crisis creates a perfect storm of reduced funding, restrictions on the operations of conservation agencies, and elevated human threats to nature. We identify the immediate steps necessary to address these challenges and support ongoing conservation efforts. We then highlight systemic flaws in contemporary conservation and identify opportunities to restructure for greater resilience. Finally, we emphasize the critical importance of conserving habitat and regulating unsafe wildlife trade practices to reduce the risk of future pandemics.
For thousands of years humankind has sought to explore our oceans. Evidence of this early intrigue dates back to 130,000BCE, but the advent of remotely operated vehicles (ROVs) in the 1950s introduced technology that has had significant impact on ocean exploration. Today, ROVs play a critical role in both military (e.g. retrieving torpedoes and mines) and salvage operations (e.g. locating historic shipwrecks such as the RMS Titanic), and are crucial for oil and gas (O&G) exploration and operations. Industrial ROVs collect millions of observations of our oceans each year, fueling scientific discoveries. Herein, we assembled a group of international ROV experts from both academia and industry to reflect on these discoveries and, more importantly, to identify key questions relating to our oceans that can be supported using industry ROVs. From a long list, we narrowed down to the 10 most important questions in ocean science that we feel can be supported (whole or in part) by increasing access to industry ROVs, and collaborations with the companies that use them. The questions covered opportunity (e.g. what is the resource value of the oceans?) to the impacts of global change (e.g. which marine ecosystems are most sensitive to anthropogenic impact?). Looking ahead, we provide recommendations for how data collected by ROVs can be maximised by higher levels of collaboration between academia and industry, resulting in win-win outcomes. What is clear from this work is that the potential of industrial ROV technology in unravelling the mysteries of our oceans is only just beginning to be realised. This is particularly important as the oceans are subject to increasing impacts from global change and industrial exploitation. The coming decades will represent an important time for scientists to partner with industry that use ROVs in order to make the most of these 'eyes in the sea'.
Cysts of the dinoflagellate G}mnodin~l!ni catenaluni were present only in the top sections ot duplicate marine sediment corcs from Deep Bay In southern T a s m a n~a ,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.