Cell-cell communication is essential for the development and homeostasis of multicellular organisms. Recently, a new type of cell-cell communication was discovered that is based on the formation of thin membranous nanotubes between remote cells. These long membrane tethers, termed tunneling nanotubes (TNTs), form an intercellular conduit and have been shown to enable the transport of various cellular components and signals. However, the molecular basis for TNT formation remains to be elucidated. Here we report that a mammalian protein, M-Sec, induces de novo formation of numerous membrane protrusions extending from the plasma membrane, some of which tether onto adjacent cells and subsequently form TNT-like structures. Depletion of M-Sec by RNA interference (RNAi) greatly reduced endogenous TNT formation as well as intercellular propagation of a calcium flux in a macrophage cell line. Furthermore, blockage of the interaction of M-Sec with Ral and the exocyst complex, which serves as a downstream effector of Ral, attenuated the formation of membrane nanotubes. Our results reveal that M-Sec functions as a key regulator of membrane nanotube formation through interaction with the Ral-exocyst pathway.
Depletion of intracellular calcium (Ca 2؉ ) stores induces storeoperated Ca 2؉ (SOC) entry across the plasma membrane (PM). STIM1, a putative Ca 2؉ sensor in the endoplasmic reticulum (ER), has been recently shown to be necessary for SOC channel activation. Here we show that STIM1 dynamically moves in tubulovesicular shape on the ER and its subcompartment in resting living cells, whereas, upon Ca 2؉ store depletion, it is rapidly redistributed into discrete puncta that are located underneath, but not inserted into the PM. Normal constitutive movement of STIM1 is mediated through the coiled-coil and Ser͞Thr-rich C-terminal domains in the cytoplasmic region of STIM1, whereas subsequent inducible puncta formation further requires the sterile ␣ motif domain protruding into the ER lumen. Each of these three domains (coiled-coil, Ser͞Thr-rich, and sterile ␣ motif) was essential for activating SOC channels. Hence, our findings based on structure-function experiments suggest that constitutive dynamic movement of STIM1 in the ER and its subcompartment is obligatory for subsequent depletion-dependent redistribution of STIM1 into puncta underneath the PM and activation of SOC channels.B cell receptor ͉ calcium signaling ͉ DT40 ͉ store-operated calcium C ytosolic Ca 2ϩ signals are a key to the regulation of various physiological events (1, 2). Two stages of calcium mobilization have been distinguished in lymphocytes and other nonexcitable cells (3-5). The first stage involves activation of phospholipase C by trimeric G protein-or tyrosine kinase-coupled receptors. This enzyme hydrolyzes phosphatidylinositol bisphosphate to release the second messenger inositol-1,4,5-trisphosphate, which binds to its receptor in the endoplasmic reticulum (ER) membrane, thereby causing rapid but transient release of Ca 2ϩ from ER stores. The second stage involves a sustained influx of extracellular Ca 2ϩ across the plasma membrane (PM) in a process termed store-operated Ca 2ϩ (SOC) entry. In this process, depletion of Ca 2ϩ within the ER lumen serves as the primary trigger to open SOC channels residing in the PM.STIM1 has recently emerged to play a critical role in coupling the first and second stages of calcium mobilization (6, 7). The STIM1 protein is thought to function primarily as a sensor of Ca 2ϩ within the ER stores, because a single N-terminal EF-hand Ca 2ϩ binding motif is located within the ER lumen (7,8). The activation mechanism of STIM1, however, has remained elusive. For instance, Zhang and colleagues (9, 10) proposed that insertion of STIM1 from the ER to the PM, presumably through vesicular transport, would be a prerequisite for subsequent SOC channel activation. Furthermore, STIM1 in the PM has been reported to play a role for SOC activation (11). But others have shown that STIM1 redistributed into puncta near the PM without inserting into the PM and proposed that this aggregated STIM1 might activate SOC channels (7, 12).To elucidate the mechanisms by which STIM1 activates SOC channels, we have constructed STIM1 mutants and ...
Four distinct subsets of invariant natural killer T (NKT) cells are shown to differentiate in the thymus, then migrate to peripheral tissues where they retain their phenotypic and functional characteristics.
Airway hypersensitive reaction (AHR) is an animal model for asthma, which is caused or
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.