Our purpose in this study was to investigate the usefulness of a method for controlling the temperature rise in magnetic hyperthermia (MH) using an external static magnetic field (SMF), and to derive an empirical equation for describing the energy dissipation of magnetic nanoparticles (MNPs) in the presence of both the alternating magnetic field (AMF) and SMF through phantom experiments. We made a device that allows for MH in the presence of an SMF with a field-free point (FFP) using a Maxwell coil pair. We measured the temperature rise of MNPs under various conditions of AMF and SMF and various distances from the FFP (d), and calculated the specific absorption rate (SAR) from the initial slope of the temperature curve. The SAR values decreased with increasing strength of SMF (Hs) and d. The extent of their decrease with d increased with an increase of the gradient of SMF (Gs). The relationships between SAR and Hs and between SAR and d could be well approximated by Rosensweig's equation in which the amplitude of AMF (Hac) is replaced by √[Hac(2)]/√[Hac(2)+Hs(2)], except for the case when Gs was small. In conclusion, the use of an external SMF with an FFP will be effective for controlling the temperature rise in MH in order to reduce the risk of heating surrounding healthy tissues, and our empirical equation will be useful for estimating SAR in the presence of both the AMF and SMF and for designing an effective local heating system for MH.
Our purpose of this study was to present simulation and experimental studies on magnetic hyperthermia (MH) with use of an alternating magnetic field (AMF) and superparamagnetic iron oxide nanoparticles (Resovist®). In the simulation studies, the energy dissipation (P) and temperature rise rate (∆T/∆t) were computed under various conditions by use of the probability density function of the particle size distribution based on a log-normal distribution. P and ∆T/∆t and their dependence on the frequency of the AMF (f) largely depended on the particle size of Resovist®. P and ∆T/∆t reached maximum at a diameter of ~24 nm, and were proportional to the amplitude of the AMF (H (0)) raised to a power of ~2.0. In the experimental studies, we made a device for generating an AMF, and measured the temperature rise under various concentrations of Resovist®, H (0), and f. The temperature rise at 10 min after the start of heating was linearly proportional to the concentration of Resovist®, and proportional to H (0) raised to a power of ~2.4, which was slightly greater than that expected from the simulation studies. There was a tendency for the temperature rise to saturate with increasing f. In conclusion, this study will be useful for investigating the feasibility of MH with Resovist® and optimizing the parameters for it.
This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments.
Our purpose in this study was to investigate the behavior of signal harmonics in magnetic particle imaging (MPI) by experimental and simulation studies. In the experimental studies, we made an apparatus for MPI in which both a drive magnetic field (DMF) and a selection magnetic field (SMF) were generated with a Maxwell coil pair. The MPI signals from magnetic nanoparticles (MNPs) were detected with a solenoid coil. The odd- and even-numbered harmonics were calculated by Fourier transformation with or without background subtraction. The particle size of the MNPs was measured by transmission electron microscopy (TEM), dynamic light-scattering, and X-ray diffraction methods. In the simulation studies, the magnetization and particle size distribution of MNPs were assumed to obey the Langevin theory of paramagnetism and a log-normal distribution, respectively. The odd- and even-numbered harmonics were calculated by Fourier transformation under various conditions of DMF and SMF and for three different particle sizes. The behavior of the harmonics largely depended on the size of the MNPs. When we used the particle size obtained from the TEM image, the simulation results were most similar to the experimental results. The similarity between the experimental and simulation results for the even-numbered harmonics was better than that for the odd-numbered harmonics. This was considered to be due to the fact that the odd-numbered harmonics were more sensitive to background subtraction than were the even-numbered harmonics. This study will be useful for a better understanding, optimization, and development of MPI and for designing MNPs appropriate for MPI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.