Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200 500 microM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.
System L is a major nutrient transport system responsible for the transport of large neutral amino acids including several essential amino acids. We previously identified a transporter (L-type amino acid transporter 1: LAT1) subserving system L in C6 rat glioma cells and demonstrated that LAT1 requires 4F2 heavy chain (4F2hc) for its functional expression. Since its oncofetal expression was suggested in the rat liver, it has been proposed that LAT1 plays a critical role in cell growth and proliferation. In the present study, we have examined the function of human LAT1 (hLAT1) and its expression in human tissues and tumor cell lines. When expressed in Xenopus oocytes with human 4F2hc (h4F2hc), hLAT1 transports large neutral amino acids with high affinity (K(m)= approximately 15- approximately 50 microM) and L-glutamine and L-asparagine with low affinity (K(m)= approximately 1.5- approximately 2 mM). hLAT1 also transports D-amino acids such as D-leucine and D-phenylalanine. In addition, we show that hLAT1 accepts an amino acid-related anti-cancer agent melphalan. When loaded intracellularly, L-leucine and L-glutamine but not L-alanine are effluxed by extracellular substrates, confirming that hLAT1 mediates an amino acid exchange. hLAT1 mRNA is highly expressed in the human fetal liver, bone marrow, placenta, testis and brain. We have found that, while all the tumor cell lines examined express hLAT1 messages, the expression of h4F2hc is varied particularly in leukemia cell lines. In Western blot analysis, hLAT1 and h4F2hc have been confirmed to be linked to each other via a disulfide bond in T24 human bladder carcinoma cells. Finally, in in vitro translation, we show that hLAT1 is not a glycosylated protein even though an N-glycosylation site has been predicted in its extracellular loop, consistent with the property of the classical 4F2 light chain. The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.
ABCG2, also known as BCRP, is a high-capacity urate exporter, the dysfunction of which raises gout/hyperuricemia risk. Generally, hyperuricemia has been classified into urate 'overproduction type' and/or 'underexcretion type' based solely on renal urate excretion, without considering an extra-renal pathway. Here we show that decreased extra-renal urate excretion caused by ABCG2 dysfunction is a common mechanism of hyperuricemia. Clinical parameters, including urinary urate excretion, are examined in 644 male outpatients with hyperuricemia. Paradoxically, ABCG2 export dysfunction significantly increases urinary urate excretion and risk ratio of urate overproduction. Abcg2-knockout mice show increased serum uric acid levels and renal urate excretion, and decreased intestinal urate excretion. Together with high ABCG2 expression in extra-renal tissues, our data suggest that the 'overproduction type' in the current concept of hyperuricemia be renamed 'renal overload type', which consists of two subtypes—'extra-renal urate underexcretion' and genuine 'urate overproduction'—providing a new concept valuable for the treatment of hyperuricemia and gout.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.