ABCG2, also known as BCRP, is a high-capacity urate exporter, the dysfunction of which raises gout/hyperuricemia risk. Generally, hyperuricemia has been classified into urate 'overproduction type' and/or 'underexcretion type' based solely on renal urate excretion, without considering an extra-renal pathway. Here we show that decreased extra-renal urate excretion caused by ABCG2 dysfunction is a common mechanism of hyperuricemia. Clinical parameters, including urinary urate excretion, are examined in 644 male outpatients with hyperuricemia. Paradoxically, ABCG2 export dysfunction significantly increases urinary urate excretion and risk ratio of urate overproduction. Abcg2-knockout mice show increased serum uric acid levels and renal urate excretion, and decreased intestinal urate excretion. Together with high ABCG2 expression in extra-renal tissues, our data suggest that the 'overproduction type' in the current concept of hyperuricemia be renamed 'renal overload type', which consists of two subtypes—'extra-renal urate underexcretion' and genuine 'urate overproduction'—providing a new concept valuable for the treatment of hyperuricemia and gout.
Gout based on hyperuricemia is a common disease with a genetic predisposition, which causes acute arthritis. The ABCG2/BCRP gene, located in a gout-susceptibility locus on chromosome 4q, has been identified by recent genome-wide association studies of serum uric acid concentrations and gout. Urate transport assays demonstrated that ABCG2 is a high-capacity urate secretion transporter. Sequencing of the ABCG2 gene in 90 hyperuricemia patients revealed several nonfunctional ABCG2 mutations, including Q126X. Quantitative trait locus analysis of 739 individuals showed that a common dysfunctional variant of ABCG2, Q141K, increases serum uric acid. Q126X is assigned to the different disease haplotype from Q141K and increases gout risk, conferring an odds ratio of 5.97. Furthermore, 10% of gout patients (16 out of 159 cases) had genotype combinations resulting in more than 75% reduction of ABCG2 function (odds ratio, 25.8). Our findings indicate that nonfunctional variants of ABCG2 essentially block gut and renal urate excretion and cause gout.
Summary1. Schedules of survival, growth and reproduction are key life-history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population *Correspondence author. E-mails: salguero@demogr.mpg.de; compadre-contact@demogr.mpg.de † Joint senior author. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. 2015, 103, 202-218 doi: 10.1111/1365-2745.12334 growth or decline, such data help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change and how to develop successful management tools for endangered or invasive species. Journal of Ecology2. Matrix population models summarize the life cycle components of survival, growth and reproduction, while explicitly acknowledging heterogeneity among classes of individuals in the population. Matrix models have comparable structures, and their emergent measures of population dynamics, such as population growth rate or mean life expectancy, have direct biological interpretations, facilitating comparisons among populations and species. 3. Thousands of plant matrix population models have been parameterized from empirical data, but they are largely dispersed through peer-reviewed and grey literature, and thus remain inaccessible for synthetic analysis. Here, we introduce the COMPADRE Plant Matrix Database version 3.0, an opensource online repository containing 468 studies from 598 species world-wide (672 species hits, when accounting for species studied in more than one source), with a total of 5621 matrices. COMPADRE also contains relevant ancillary information (e.g. ecoregion, growth form, taxonomy, phylogeny) that facilitates interpretation of the numerous demographic metrics that can be derived from the matrices. 4. Synthesis. Large collections of data allow broad questions to be addressed at the global scale, for example, in genetics (GENBANK), functional plant ecology (TRY, BIEN, D3) and grassland community ecology (NUTNET). Here, we present COMPADRE, a similarly data-rich and ecologically relevant resource for plant demography. Open access to this information, its frequent updates and its integration with other online resources will allow researchers to address timely and important ecological and evolutionary questions.
ObjectiveGout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only.MethodsA GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls.ResultsFive gout susceptibility loci were identified at the genome-wide significance level (p<5.0×10−8), which contained well-known urate transporter genes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10−12; OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10−23; OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10−9; OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case–control ORs for two distinct types of gout (r=0.96 [p=4.8×10−4] for urate clearance and r=0.96 [p=5.0×10−4] for urinary urate excretion).ConclusionsOur findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics.
Dietary lipids and fat-soluble micronutrients are solubilized in mixed micelles and absorbed in the small intestine. Based on an assumption that cholesterol and other fat-soluble molecules share a number of transport mechanisms and the fact that Niemann-Pick C1-like 1 (NPC1L1) is critical for intestinal cholesterol absorption, we hypothesized that some fat-soluble molecules may be transported by NPC1L1. To investigate this hypothesis, we compared the cellular uptake and inhibitory effects of ezetimibe, the molecular target of which is NPC1L1, between cholesterol and some fat-soluble molecules using rat NPC1L1-overexpressing Caco-2 cells. The in vitro analysis suggested that NPC1L1 mediates the uptake of ␣-tocopherol (vitamin E) in an ezetimibe-sensitive manner as well as the uptake of cholesterol but does not mediate the uptake of retinol (vitamin A) or cyclosporin A. To confirm the ezetimibe-sensitive uptake of ␣-tocopherol in vivo, we performed an in vivo absorption study using rats and the results suggested a physiologically significant role of NPC1L1-mediated ␣-tocopherol absorption. Furthermore, using human NPC1L1 overexpression system, we demonstrated that both cholesterol and ␣-tocopherol uptake was also significantly increased by the overexpression of human NPC1L1 and ezetimibe inhibited their uptake. Mutual inhibition studies of cholesterol and ␣-tocopherol in human NPC1L1-mediated uptake revealed the inhibitory effect of cholesterol and the stimulatory effect of ␣-tocopherol on the NPC1L1-mediated transport of both substrates. The present data suggest, for the first time, that NPC1L1 has the ability to transport ␣-tocopherol and that ezetimibe is able to inhibit the intestinal absorption of ␣-tocopherol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.