Nucleic acid aptamers are receptors of single-stranded oligonucleotides that specifically bind to their targets. Significant interest is currently focused on development of small molecule aptamers owing to their applications in biosensing, diagnostics, and therapeutics involving low molecular weight biomarkers and drugs. Despite great potential for their diverse applications, relatively few aptamers that bind to small molecules have been reported, and methodologies to enhance and broaden their functions by expanding chemical repertories have barely been examined. Here we describe construction of a modified DNA library that includes (E)-5-(2-(N-(2-(N(6)-adeninyl)ethyl))carbamylvinyl)-uracil bases and discovery of high-affinity camptothecin-binding DNA aptamers using a systematic evolution of ligands by the exponential enrichment method. Our results are the first to demonstrate the superior efficacy of base modification on affinity enhancement and the usefulness of unnatural nucleic acid libraries for development of small molecule aptamers.
Chemically modified DNA aptamers specific to human α-thrombin were obtained from oligodeoxyribonucleotide (ODN) libraries by using a capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) method. These libraries contained 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) in the primer region and/or C5-modified thymidine bearing N(6)-ethyladenine (t) in the nonprimer region. Modified DNA aptamers showed high binding affinities to the target, with dissociation constants (Kd) values in the range of subnanomolar to several ten nanomolar levels. The introduction of base modification significantly suppressed the frequency of G-quadruplex motifs, which are often seen in thrombin-binding DNA aptamers. The resulting alternatives contained the 10-mer consensus sequence t5Gt2G2, which is frequently found in modified DNA aptamers with subnanomolar protein binding affinities. Furthermore, some base- and sugar-modified DNA aptamers with the 12-mer consensus sequence t2G2tC(A/G)A2G2t displayed binding activities that were dependent on the presence of B/L nucleotides in the primer region. Such aptamers were interestingly not recovered from a natural DNA library or from DNA libraries modified with either B/L nucleotides or t's. This emerging characteristic binding property will enable the creation of a direct selection methodology for DNA-based molecular switches that are triggered by chemical conversion of B/L nucleotides introduced to constant sequence regions in ODN libraries.
We have attained a chemically modified DNA aptamer against salivary α-amylase (sAA), which attracts researchers’ attention as a useful biomarker for assessing human psychobiological and social behavioural processes, although high affinity aptamers have not been isolated from a random natural DNA library to date. For the selection, we used the base-appended base (BAB) modification, that is, a modified-base DNA library containing (E)-5-(2-(N-(2-(N6-adeninyl)ethyl))carbamylvinyl)-uracil in place of thymine. After eight rounds of selection, a 75 mer aptamer, AMYm1, which binds to sAA with extremely high affinity (Kd < 1 nM), was isolated. Furthermore, we have successfully determined the 36-mer minimum fragment, AMYm1-3, which retains target binding activity comparable to the full-length AMYm1, by surface plasmon resonance assays. Nuclear magnetic resonance spectral analysis indicated that the minimum fragment forms a specific stable conformation, whereas the predicted secondary structures were suggested to be disordered forms. Thus, DNA libraries with BAB-modifications can achieve more diverse conformations for fitness to various targets compared with natural DNA libraries, which is an important advantage for aptamer development. Furthermore, using AMYm1, a capillary gel electrophoresis assay and lateral flow assay with human saliva were conducted, and its feasibility was demonstrated.
We newly synthesized thioflavin T (ThT) analogs for which the methyl group at the N3 position on the benzothiazole ring was replaced with either a ((p-(dimethylamino)benzoyl)oxy)ethyl group (ThT-DB) or a hydroxyethyl group (ThT-HE). In several neutral buffers, ThT-HE bound to a parallel guanine-quadruplex (G4) DNA and selectively emitted strong fluorescence at 74- to 240-fold higher intensities than those in the presence of double-stranded DNA (dsDNA), whereas ThT resulted in only 13- to 25-fold higher intensities. Furthermore, circular dichroism (CD) analyses using ThT, ThT-DB, and ThT-HE showed that these compounds could induce topological changes in G4. In addition, the different chemical structures of the N3 substituents could alter a G4-DNA conformation. These results indicate a great potential for N3-substituted ThT analogs as G4 probes and drug leads to achieve gene expression regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.