Chemically modified DNA aptamers specific to human α-thrombin were obtained from oligodeoxyribonucleotide (ODN) libraries by using a capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) method. These libraries contained 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) in the primer region and/or C5-modified thymidine bearing N(6)-ethyladenine (t) in the nonprimer region. Modified DNA aptamers showed high binding affinities to the target, with dissociation constants (Kd) values in the range of subnanomolar to several ten nanomolar levels. The introduction of base modification significantly suppressed the frequency of G-quadruplex motifs, which are often seen in thrombin-binding DNA aptamers. The resulting alternatives contained the 10-mer consensus sequence t5Gt2G2, which is frequently found in modified DNA aptamers with subnanomolar protein binding affinities. Furthermore, some base- and sugar-modified DNA aptamers with the 12-mer consensus sequence t2G2tC(A/G)A2G2t displayed binding activities that were dependent on the presence of B/L nucleotides in the primer region. Such aptamers were interestingly not recovered from a natural DNA library or from DNA libraries modified with either B/L nucleotides or t's. This emerging characteristic binding property will enable the creation of a direct selection methodology for DNA-based molecular switches that are triggered by chemical conversion of B/L nucleotides introduced to constant sequence regions in ODN libraries.
We successfully generated chimeric DNA aptamers that contained six nucleoside analogs of 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) in the primer region and multiple guanosine analogs of 2'-deoxy-2'-fluoro-ribonucleic acid (FNA) in the non-primer region using capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX). Active species enrichment became saturated only after five selection rounds, and we obtained DNA-based xeno-nucleic acid (XNA) aptamers that had high binding affinities for the target human thrombin, with dissociation constant (Kd) values of ≥10 nanomolar. Based on sequence and circular dichroism (CD) analyses, these XNA aptamers exhibited RNA-like conformations, which could cause DNA-based strands to adopt structurally diverse conformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.