Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R., and Kitakado, T. 2009. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan. – ICES Journal of Marine Science, 66: 1417–1424. A generalized additive model (GAM) was applied to fishery-survey data to reveal the influences of environmental factors on the distribution patterns of Japanese anchovy (Engraulis japonicus), sand lance (Ammodytes personatus), and krill (Euphausia pacifica). Echosounder and physical-oceanographic data were collected in Sendai Bay, Japan, in spring 2005. A hierarchical model was used with two spatial strata: (i) presence and absence of each species; and (ii) biomass density of each species, given its presence; and six environmental covariates (surface water temperature, salinity, and chlorophyll, and near-seabed water temperature, salinity, and depth). The results indicate non-linear responses of the two indices to the environmental covariates. In addition, the biomasses estimated by the GAMs were comparable with estimates based on conventional, stratified-random sampling for each species. GAMs are very useful for (i) investigating the effects of environmental factors on the distributions of biological organisms, and (ii) predicting the distributions of animal densities in unsurveyed areas.
The spatial distribution of Antarctic minke whales in the Ross Sea with relation to spatial distributions of their prey – krill – was investigated in this study using generalized additive models (GAMs). Spatial distributions of two species of krill (ice and Antarctic krill) were estimated by GAMs. Three abiotic factors – distance from the continental shelf break (800 m isobaths), the mean temperature and salinity from the surface to 200 m (MTEM‐200 and MSAL‐200), and latitude and longitude – were used as covariates for models of krill. Estimated spatial distributions of krill were then used with other covariates to model the spatial distribution of Antarctic minke whales. In the selected model of Antarctic minke whales, Antarctic krill were more influential than ice krill. The number of Antarctic minke whales increased as the density of Antarctic krill increased to around 1.5 g m−2. Beyond that, the number of Antarctic minke whales decreased as the density of Antarctic krill increased. High densities of the Antarctic minke whales were estimated along the sea ice edge in the eastern part of the Ross Sea. Specifically, the densities were high in the north of the continental shelf break where low MTEM‐200 and MSAL‐200 and intermediate densities of Antarctic krill were observed. Further data collection is needed to investigate interannual variations and trends in their relationship. The results show that the spatial distribution of Antarctic minke whales is a function of longitude, distance from the shelf break, oceanographic condition (temperature and salinity), and densities of ice and Antarctic krill.
The Antarctic continental margin supplies the densest bottom water to the global abyss. From the late twentieth century, an acceleration in the long-term freshening of Antarctic Bottom Waters (AABW) has been detected in the Australian-Antarctic Basin. Our latest hydrographic observations reveal that, in the late 2010s, the freshening trend has reversed broadly over the continental slope. Near-bottom salinities in 2018–2019 were higher than during 2011–2015. Along 170° E, the salinity increase between 2011 and 2018 was greater than that observed in the west. The layer thickness of the densest AABW increased during the 2010s, suggesting that the Ross Sea Bottom Water intensification was a major source of the salinity increase. Freshwater content on the continental slope decreased at a rate of 58 ± 37 Gt/a in the near-bottom layer. The decadal change is very likely due to changes in Ross Sea shelf water attributable to a decrease in meltwater from West Antarctic ice shelves for the corresponding period.
A study of common minke and Bryde's whales was conducted in the western North Pacific in the 2000 and 2001 summer seasons to estimate prey selection of cetaceans as this is an important parameter in ecosystem models. Whale sighting and sampling surveys and prey surveys using quantitative echosounder and mid-water trawl were carried out concurrently in the study. Biomasses of Japanese anchovy, walleye pollock and krill, which were major prey species of common minke and Bryde's whales, were estimated using an echosounder. The results suggested that common minke whale showed prey selection for Japanese anchovy while they seemed to avoid krill in both the offshore and coastal regions and walleye pollock in the continental shelf region. Selection for shoaling pelagic fish was similar to that in the eastern North Atlantic. Bryde's whale showed selection for Japanese
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.