To determine the nature of intracellular Mg2+ stores and Mg2+ release mechanisms in differentiated PC12 cells, Mg2+ and Ca2+ mobilizations were measured simultaneously in living cells with KMG-104, a fluorescent Mg2+ indicator, and fura-2, respectively. Treatment with the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), increased both the intracellular Mg2+ concentration ([Mg2+]i) and the [Ca2+]i in these cells. Possible candidates as intracellular Mg2+ stores under these conditions include intracellular divalent cation binding sites, endoplasmic reticulum (ER), Mg-ATP and mitochondria. Given that no change in [Mg2+]i was induced by caffeine application, intracellular IP3 or Ca2+ liberated by photolysis, it appears that no Mg2+ release mechanism thus exists that is mediated via the action of Ca2+ on membrane-bound receptors in the ER or via the offloading of Mg2+ from binding sites as a result of the increased [Ca2+]i. FCCP treatment for 2 min did not alter the intracellular ATP content, indicating that Mg2+ was not released from Mg-ATP, at least in the first 2 min following exposure to FCCP. FCCP-induced [Mg2+]i increase was observed at mitochondria localized area, and vice versa. These results suggest that the mitochondria serve as the intracellular Mg2+ store in PC12 cell. Simultaneous measurements of [Ca2+]i and mitochondrial membrane potential, and also of [Ca2+]i and [Mg2+]i, revealed that the initial rise in [Mg2+]i followed that of mitochondrial depolarization for several seconds. These findings show that the source of Mg2+ in the FCCP-induced [Mg2+]i increase in PC12 cells is mitochondria, and that mitochondrial depolarization triggers the Mg2+ release.
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.
A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals.
To survive a predator’s attack successfully, animals choose appropriate actions from multiple escape responses. The motor performance of escape response governs successful survival, which implies that the action selection in escape behaviour is based on the trade-off between competing behavioural benefits. Thus, quantitative assessment of motor performance will shed light on the biological basis of decision-making. To explore the trade-off underlying the action selection, we focused on two distinct wind-elicited escape responses of crickets, running and jumping. We first hypothesized a trade-off between speed and directional accuracy. This hypothesis was rejected because crickets could control the escape direction in jumping as precisely as in running; further, jumping had advantages with regard to escape speed. Next, we assumed behavioural flexibility, including responsiveness to additional predator’s attacks, as a benefit of running. The double stimulus experiment revealed that crickets running in the first response could respond more frequently to a second stimulus and control the movement direction more precisely compared to when they chose jumping for the first response. These data suggest that not only the motor performance but also the future adaptability of subsequent behaviours are considered as behavioural benefits, which may be used for choosing appropriate escape reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.