In order to reexamine the cortical distribution of the callosal connection, as well as its topographical relation to the binocular area in the rabbit visual cortex, the distribution of cortical responses evoked by electrical stimulation of the optic nerve and by direct cortical stimulation of the opposite visual area were studied in thirty immobilized animals.
It has taken many decades to arrive at today's concept of cupula mechanics in the stimulation of endolymphatic flows on the hair cells in the ampullae of the semicircular canal. While Steinhausen assumed free swing-door movement of the cupula in the 1930s, Hillman was the first to demonstrate firm cupula attachment to the ampulla wall as a physiological necessity in the 1970s. In contrast to the present clinical concepts of acute peripheral vestibular functional disorders (circulatory disturbances, viral or bacterial infection, altered electrolytes in the endolymph), this study examines the extent to which an impaired attachment mechanism can trigger peripheral vestibular disorders. For this purpose, we used a pigeon model (n = 8), in which mechanical detachment of the cupula from the ampulla wall was achieved by means of a targeted pressure increase in the ampulla of the lateral semicircular canal. In two additional animals the labyrinth was completely destroyed on one side in order to directly compare partial and complete vestibular disorders. In this way partial damage to the lateral semicircular canal ampulla presents a clinical picture whose symptoms are very similar to those of an idiopathic vestibular disorder in humans. Their intensity and course of compensation differ markedly from the symptoms of complete vestibular destruction. Subsequent histological examination revealed that the hair cells remained intact during the experimental detachment of the cupula. Our results thus show that only altered cupula mechanics seem to trigger the clinical picture of a peripheral vestibular disorder. This may result in completely new approaches to differential diagnosis and the therapy of vestibular neuronitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.