This article reviews the development of a global non-hydrostatic model, focusing on the pioneering research of the Non-hydrostatic Icosahedral Atmospheric Model (NICAM). Very high resolution global atmospheric circulation simulations with horizontal mesh spacing of approximately O (km) were conducted using recently developed supercomputers. These types of simulations were conducted with a specifically designed atmospheric global model based on a quasi-uniform grid mesh structure and a non-hydrostatic equation system. This review describes the development of each dynamical and physical component of NICAM, the assimilation strategy and its related models, and provides a scientific overview of NICAM studies conducted to date.
[1] The roles of deep convection and generated waves in the Tropical Tropopause Layer (TTL) are investigated using a global nonhydrostatic model, the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), which runs on the Earth Simulator with a horizontal spacing of 7 km. The model data, which successfully simulated a Madden-Julian Oscillation (MJO) event for the period between 15 December 2006 and 15 January 2007, are analyzed. The frequency of deep convective clouds that reach the TTL is one of the key diagnostics for dehydration and transport. The present results revealed that the proportion of cumulus clouds that penetrate the lapse-rate tropopause and the bottom boundary of the TTL (defined as the lapse rate minimum) is $0.5% and $20%, respectively, in the region between 5 S and 5 N. This result is reasonably consistent with atmospheric observations. Deep convective activity that reaches the TTL was observed over southern Africa, the Indian Ocean, the Indonesian maritime continent, the western Pacific, and southern America. Deep convection over the continents was most active during the local evening period. Over the oceans, high clouds reaching the tropopause were seen over the Indian Ocean and the seas around Java, where two tropical cyclones were generated. Prominent diurnal variations in tropopause temperature associated with deep convection occurred over the Indonesian maritime continent. These diurnal variations were superimposed on large, low-frequency temperature variations associated with equatorial Kelvin waves generated by the MJO convection. Probably because of coarse vertical resolution, temperature variations simulated by the NICAM are larger than those in the real atmosphere. The two tropical cyclones caused relatively large tropopause temperature variations with a cyclone scale ($500 km horizontally). The gravity waves generated by tropical cyclones cause small tropopause temperature variations that extend for 1000 km from the cyclone. We conclude that the Kelvin waves associated with the MJO convection cause the largest amplitude of temperature variations in the TTL and that tropical cyclones and diurnal variations of convective activity have large local impacts on temperature variations in the TTL.
[1] The dynamical characteristics of the tropical tropopause layer (TTL) are investigated using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) run on the Earth Simulator under an aqua planet condition. Two experiments are performed: one with a 3.5 km horizontal spacing and a three-dimensional snapshot output and another with a 7 km horizontal spacing and 3-hourly averages for 1 month. The number of vertical levels is 54 and the model top is at 40 km; the vertical spacing in and around the TTL is ∼700 m. Large-scale organized convection associated with convectively coupled equatorial Kelvin waves prevails around the equator. The zonal mean vertical distribution of cloud top height near the equator shows a realistic trimodal structure. The simulation results reveal that cumulus clouds penetrate the lapse-rate tropopause and the bottom boundary of the TTL (defined as the lapse rate minimum) for ∼0.1% and ∼25%, respectively, in the equatorial area. The frequency distribution of vertical wind may provide a good indicator of the TTL bottom boundary. A significant reduction in the speed of strong vertical winds is observed at ∼16 km. High variability in temperature and the water vapor mixing ratio observed around the tropopause is mainly caused by equatorial Kelvin waves generated by the organized convection in these experiments. Horizontal variability in tropopause height over a large-scale convective system is much smaller than that in the area of Kelvin waves. The gravity waves generated by this large-scale convective system locally control the temperature around the tropopause. In addition, large-amplitude gravity waves with a scale of 600 km are superimposed on the cold phase of Kelvin waves, producing one of the coldest regions around the tropopause. It is suggested that the combination of Kelvin waves and gravity waves may be one of the most effective dehydration processes in the TTL.
The factors of tropical cyclone (TC) genesis that are associated with African easterly waves (AEWs) were analyzed. We detected AEWs that passed over the West African coast (WAC) using ERA-interim data from July to September 2000−2010 and examine differences between the characteristics of AEWs that either develop or do not develop TCs. We first examined the environmental conditions of the AEWs that develop TCs and their dependencies on genesis location. We found that the mid-level relative humidity near the WAC is most strongly related to the genesis location among the factors contributing to TC genesis. Composite maps of the AEWs show that wave trains at 600 hPa are west-north-westward for AEWs that develop TCs and westward for non-developing AEWs. The location of maximum of water vapor at 400 hPa coincides with the stream function center for cases of TC development, while it is shifted to the southeast for cases of non-development. We focused on a case of a nondeveloping AEW with high relative humidity near the WAC, and found that, among other possible suppression mechanisms, a dry shallow vortex originating from the Sahara Desert had an additional effect of suppressing TC genesis.(Citation: Satoh, M., R. Nihonmatsu, and H. Kubokawa, 2013: Environmental conditions for tropical cyclogenesis associated with African easterly waves. SOLA, 9,[120][121][122][123][124]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.