The paper, prepared by CIGRE WG D1.03 (TF 09), presents the guidelines for risk assessment procedure on defects in GIS based on PD diagnostics. The procedure, described in detail in CIGRE Technical Brochure 525, starts with sensitive PD measurement to detect the critical defects and follows with identification of the type of the defect and its location inside the GIS. This information taken together with other essential data from laboratory measurements, manufacturer's experience, design aspects and trend analysis of the PD activity, are the base for the estimation of the criticality of the defects. Finally, the risk assessment is performed based on the estimated dielectric failure probability and failure consequences that can be different in case of on-site testing or in service activity.Index Terms -Gas insulated substation, defects, partial discharge measurements, diagnostics and risk assessment.
Gas insulated switchgears (GIS) have been increasingly introduced as main substationequipment since the late 1960s thanks to their high reliability, safety, and compactness. The UHF method to diagnose partial discharge (PD) is broadly employed in the field as an advanced insulation diagnostic technology. There are three primary factors related to the PD signal detection characteristics using this UHF method; namely the frequency spectrum of the PD signal itself inside GIS, the propagation characteristics of the PD signal inside the GIS tank, and the detection characteristics of the sensor measuring the PD signal. Accordingly, to further improvement of the diagnostic technique based on the UHF method, the PD phenomenon itself and its propagation characteristics should be clarified and the measurement system refined. From these perspectives, the present study reviewed the recent and latest findings concerning the PD phenomenon and its propagation characteristics inside GIS as well as the PD measurement system verification methods and diagnostic technologies, and summarized typical examples. Firstly, with regard to the PD phenomenon, measurement up to the high frequency band exceeding 10 GHz (even 30 GHz) clarified that the rise time of the PD current waveform is several tens of picoseconds, shorter than previously known. In the case of PD in micro-defects inside the epoxy insulator, however, the rise time is relatively long, in the order of nanoseconds, and a crack is the most critical defect. Subsequently, with regard to UHF PD diagnostics/monitoring technology, a novel technique using PD current waveform characteristics has been developed, and a more advanced PD diagnostic algorithm has been established by clarifying the influence of the shape and GIS internal structures on the electromagnetic wave propagation characteristics. Less uncertain and simplified calibration and verification technologies are also proposed both for a single UHF sensor and the entire UHF measurement system. These new technologies and further advanced studies in future are expected to make the UHF method more convenient and sophisticated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.