The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues conserved among bacterial YaeJ proteins. Additionally, we determined the solution structure of the GGQ domain of YaeJ from E. coli using nuclear magnetic resonance spectroscopy. YaeJ and a human homolog, ICT1, had similar levels of PTH activity, despite various differences in sequence and structure. While no YaeJ-specific residues important for PTH activity occur in the structured GGQ domain, Arg118, Leu119, Lys122, Lys129 and Arg132 in the following C-terminal extension were required for PTH activity. All of these residues are completely conserved among bacteria. The equivalent residues were also found in the C-terminal extension of ICT1, allowing an appropriate sequence alignment between YaeJ and ICT1 proteins from various species. Single amino acid substitutions for each of these residues significantly decreased ribosome-binding efficiency. These biochemical findings provide clues to understanding how YaeJ enters the A-site of stalled ribosomes.
Loss of function of the c12orf65 gene causes a mitochondrial translation defect, leading to encephalomyopathy. The C12orf65 protein is thought to play a role similar to that of ICT1 in rescuing stalled mitoribosomes during translation. Both proteins belong to a family of Class I peptide release factors (RFs), all characterized by the presence of a GGQ motif. Here, we determined the solution structure of the GGQ-containing domain (GGQ domain) of C12orf65 from mouse by NMR spectroscopy, and examined the effect of siRNA-mediated knockdown of C12orf65 on mitochondria in HeLa cells using flow cytometry. The GGQ domain, comprising residues 60-124 of the 184-residue full-length protein, forms a structure with a 3(10) -β1-β2-β3-α1 topology that resembles the GGQ domain structure of RF more closely than that of ICT1. Thus, the GGQ domain structures of this protein family can be divided into two types, depending on the region linking β2 and β3; the C12orf65/RF type having a 6-residue π-HB turn and the ICT1 type having an α-helix. Knockdown of C12orf65 resulted in increased ROS production and apoptosis, leading to inhibition of cell proliferation. Substantial changes in mitochondrial membrane potential and mass in the C12orf65-knockdown cells were observed compared with the control cells. These results indicate that the function of C12orf65 is essential for cell vitality and mitochondrial function. Although similar effects were observed in ICT1-downregulated cells, there were significant differences in the range and pattern of the effects between C12orf65- and ICT1-knockdown cells, suggesting different roles of C12orf65 and ICT1 in rescuing stalled mitoribosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.