Fish egg yolk is largely derived from vitellogenins, which are synthesized in the liver, taken up from the maternal circulation by growing oocytes via receptor-mediated endocytosis and enzymatically processed into yolk proteins that are stored in the ooplasm. Lipid droplets are another major component of fish egg yolk, and these are mainly composed of neutral lipids that may originate from maternal plasma lipoproteins. This review aims to briefly summarize our current understanding of the molecular mechanisms underlying yolk formation in fishes. A hypothetical model of oocyte growth is proposed based on recent advances in our knowledge of fish yolk formation.
Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.
RNA interference (RNAi) is a phenomenon in which small interfering RNA (siRNA), an RNA duplex 21 to 23 nucleotides (nt) long, or short hairpin RNA (shRNA) resembling siRNA, mediates degradation of the target RNA molecule in a sequence‐specific manner. RNAi is now expected to be a useful therapeutic strategy for hepatitis C virus (HCV) infection. In the present study we compared the efficacy of a number of shRNAs directed against different target regions of the HCV genome, such as 5′‐untranslated region (5′UTR) (nt 286 to 304), Core (nt 371 to 389), NS3–1 (nt 2052 to 2060), NS3–2 (nt 2104 to 2122), and NS5B (nt 7326 to 7344), all of which except for NS5B are conserved among most, if not all, HCV subtype 1b (HCV‐1b) isolates in Japan. We utilized two methods to express shRNAs, one utilizing an expression plasmid (pAVU6+27) and the other utilizing a recombinant lentivirus harboring the pAVU6+27‐derived expression cassette. Although 5′UTR has been considered to be the most suitable region for therapeutic siRNA and/or shRNA because of its extremely high degree of sequence conservation, we observed only a faint suppression of an HCV subgenomic replicon by shRNA against 5′UTR. In both plasmid‐ and lentivirus‐mediated expression systems, shRNAs against NS3–1 and NS5B suppressed most efficiently the replication of the HCV replicon without suppressing host cellular gene expression. Synthetic siRNA against NS3–1 also inhibited replication of the HCV replicon in a dose‐dependent manner. Taken together, the present results imply the possibility that the recombinant lentivirus expressing shRNA against NS3–1 would be a useful tool to inhibit HCV‐1b infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.