Postoperative endothelial cell loss leads to graft failure after corneal transplantation, and is one of the important issues for long-term prognosis. The objective of this study was to identify clinical factors affecting graft survival and postoperative endothelial cell density (ECD) after Descemet’s stripping automated endothelial keratoplasty (DSAEK). A total of 198 consecutive Japanese patients (225 eyes) who underwent DSAEK were analysed using Cox proportional hazard regression and multiple linear regression models. The candidate factors included recipient age; gender; diagnosis; pre-existing iris damage state, scored based on its severity; the number of previous intraocular surgeries; graft ECD; graft diameter; simultaneous cataract surgery; surgeons experience; intraoperative iris damage; postoperative rebubbling; and graft rejection. Eyes with higher pre-existing iris damage score and more number of previous intraocular surgery had a significantly higher risk of graft failure (HR = 8.53; P < 0.0001, and HR = 2.66; P = 0.026, respectively). Higher pre-existing iris damage score, lower graft ECD, and smaller graft diameter were identified as significant predisposing factors for lower postoperative ECD. The results show that iris damage status before DSAEK may be clinically useful in predicting the postoperative course. Avoiding intraoperative iris damage, especially in eyes with low ECD can change the prognosis of future DSAEK.
Tear film breakup time (TFBUT) is an essential parameter used to diagnose dry eye disease (DED). However, a robust method for examining TFBUT in murine models has yet to be established. We invented an innovative device, namely, the "Smart Eye Camera", which addresses several problems associated with existing methods and is capable of evaluating TFBUT in a murine DED model. We compared images taken by existing devices and the Smart Eye Camera in a graft-versus-host disease-related DED murine model. We observed that the quality of the images obtained by the Smart Eye Camera were sufficient for practical use. Moreover, this new technique could be used to obtain measurements for several consecutive ocular phenotypes in a variety of environments. Here, we demonstrate the effectiveness of our new invention in the examination of ocular phenotypes, including TFBUT in a murine model. We highlight the potential for future translational studies adopting the Smart Eye Camera in clinical settings.
Background: Visual impairments and age-related eye diseases need to be detected and treated in a timely manner. However, this is often hampered by lack of appropriate medical equipment. We have invented a portable, recordable, and smartphone-attachable slit-lamp device, called the Smart Eye Camera (SEC). The aim of this study was to compare evaluating nuclear cataract (NUC) between the SEC and the conventional, non-portable slit-lamp microscope. Methods: A total of 128 eyes of 64 Japanese patients (mean age: 73.95 ± 9.28 years; range: 51‒92 years; female: 34) were enrolled. The NUC was classified into four grades (grade 0 to 3) based on three standard photographs of nuclear opacities according to the WHO classification by ophthalmologists. An ophthalmic healthcare assistant (non-ophthalmologist) filmed the eyes in video mode by the SEC and an ophthalmologist graded the NUC. Grade correlation and inter-rater reproducibility were determined. Results: NUC grading by the two approaches correlated significantly (both eyes: r = 0.871 [95%CI: 0.821 to 0.907; p < 0.001]). Inter-rater agreement was high (weighted κ = 0.807 [95%CI: 0.798 to 0.816; p < 0.001]). Conclusions: This study suggests that the SEC is as reliable as the conventional non-portable slit-lamp microscope for evaluating NUC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.